OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2281–2292

General perturbation technique for the calculation of radiative effects in scattering and absorbing media

Igor N. Polonsky and Michael A. Box  »View Author Affiliations

JOSA A, Vol. 19, Issue 11, pp. 2281-2292 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently it has been shown that the perturbation technique, based on joint use of both the direct and the adjoint solutions of the radiative transfer equation, is a powerful tool to solve and analyze various time-independent one-dimensional problems of atmospheric physics such as the calculation of weighting functions, prediction of radiative effects, and development of retrieval algorithms. Our primary goal is to obtain a general formulation of the perturbation technique for the most general case of the radiative transfer problem: time-dependent problems, with regard to polarization, and any possible external sources of radiation such as laser beams and solar illumination. Possible areas of application of the perturbation technique are discussed, and several examples to illustrate them are provided. The accuracy of this technique is discussed by considering the particular examples.

© 2002 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(260.5430) Physical optics : Polarization
(290.4210) Scattering : Multiple scattering

Original Manuscript: December 2, 2001
Revised Manuscript: June 17, 2002
Manuscript Accepted: June 17, 2002
Published: November 1, 2002

Igor N. Polonsky and Michael A. Box, "General perturbation technique for the calculation of radiative effects in scattering and absorbing media," J. Opt. Soc. Am. A 19, 2281-2292 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  2. J. Lenoble, ed., Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures (A. Deepak, Hampton, Va., 1985).
  3. E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, Heidelberg, 1991).
  4. G. I. Bell, S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinholt, New York, 1970).
  5. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1952).
  6. G. I. Marchuk, Adjoint Equations and Analysis of Complex System (Kluwer Academic, Dordrecht, The Netherlands, 1994).
  7. L. M. Romanova, “Radiation transfer in a horizontally inhomogeneous scattering medium,” Izv., Acad. Sci. USSR Atmos. Oceanic Phys. 11, 509–513 (1975).
  8. J. Li, J. W. Geldart, P. Chylek, “Perturbation solution for 3D radiative transfer in a horizontally periodic inhomogeneous cloud field,” J. Atmos. Sci. 51, 2110–2122 (1994). [CrossRef]
  9. J. Li, J. W. Geldart, P. Chylek, “Second order perturbation solution for radiative transfer in clouds with a horizontally arbitrary periodic inhomogeneity,” J. Quant. Spectrosc. Radiat. Transfer 53, 445–456 (1995). [CrossRef]
  10. R. J. D. Spurr, T. P. Kurosu, K. V. Chance, “A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval,” J. Quant. Spectrosc. Radiat. Transfer 68, 689–735 (2001). [CrossRef]
  11. G. I. Marchuk, “Equation for the value of information from weather satellite and formulation of inverse problems,” Kosm. Issled. 2, 462–477 (1964).
  12. S. A. W. Gerstl, “Application of modern neutron transport methods to atmospheric radiative transfer,” in Volume of Extended Abstracts, International Radiation Symposium, Fort Collins, Colorado, August 11–16, 1980, pp. 500–502.
  13. M. A. Box, S. A. W. Gerstl, C. Simmer, “Application of the adjoint formulation to the calculation of atmospheric radiative effects,” Beitr. Phys. Atmos. 61, 303–311 (1988).
  14. M. A. Box, M. Keevers, B. H. J. McKellar, “On the perturbation series for radiative effects,” J. Quant. Spectrosc. Radiat. Transfer 39, 219–223 (1988). [CrossRef]
  15. M. A. Box, S. A. W. Gerstl, C. Simmer, “Computation of atmospheric radiative effects via perturbation theory,” Beitr. Phys. Atmos. 62, 193–199 (1989).
  16. M. A. Box, B. Croke, S. A. W. Gerstl, C. Simmer, “Application of the perturbation theory for atmospheric radiative effects: aerosol scattering atmospheres,” Beitr. Phys. Atmos. 62, 200–211 (1989).
  17. E. A. Ustinov, “Inverse problem of thermal sounding: to recover the vertical profile of the absorption coefficient of an optically active component of a planetary atmosphere from observing emitted radiation,” Cosmic Res. 28, 347–355 (1990).
  18. E. A. Ustinov, “Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR,” J. Quant. Spectrosc. Radiat. Transfer 68, 195–211 (2001). [CrossRef]
  19. E. A. Ustinov, “The inverse problem of the photometry of solar radiation reflected by an optically thick planetary atmosphere. Mathematical methods and weighting functions of linearized inverse problem,” Cosmic Res. 29, 519–532 (1991).
  20. E. A. Ustinov, “The inverse problem of the photometry of solar radiation reflected by an optically thick planetary atmosphere. 2. Numerical aspects and requirements on the observation geometry,” Cosmic Res. 29, 785–800 (1991).
  21. E. A. Ustinov, “The inverse problem of the photometry of solar radiation reflected by an optically thick planetary atmosphere. 3. Remote sensing of minor gaseous constituents and an atmospheric aerosol,” Cosmic Res. 30, 170–181 (1992).
  22. J. Landgraf, O. Hasekamp, M. A. Box, T. Trautmann, “A linearized radiative transfer model for ozone profile retrieval using the analytical forward-adjoint perturbation theory approach,” J. Geophys. Res. 106, 27291–27306 (2001). [CrossRef]
  23. J. Landgraf, O. Hasekamp, T. Trautmann, “Linearization of radiative transfer with respect to surface properties,” J. Quant. Spectrosc. Radiat. Transfer 72, 327–339 (2001). [CrossRef]
  24. C. Sendra, M. A. Box, “Retrieval of the phase function and scattering optical thickness of aerosols: a radiative perturbation theory application,” J. Quant. Spectrosc. Radiat. Transfer 64, 499–515 (2000). [CrossRef]
  25. I. N. Polonsky, M. A. Box, “Perturbation technique to retrieve scattering medium stratification,” J. Atmos. Sci. 59, 758–768 (2002). [CrossRef]
  26. Y. Tian, “Perturbation theory for polarized radiative transfer computation,” Ph.D. thesis (University of New South Wales, Sydney, Australia, 2000).
  27. Y. Tian, M. A. Box, “Radiative perturbation theory for polarized radiance,” J. Quant. Spectr. Radiat. Transfer 72, 789–8002 (2002). [CrossRef]
  28. E. A. Ustinov, Earth and Space Sciences Division, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, Calif. 91109-8099 (personal communication, 2001).
  29. E. P. Zege, L. I. Chaikovskaya, “Polarization of multiply scattered lidar return from clouds and ocean water,” J. Opt. Soc. Amer. A 16, 1430–1438 (1999). [CrossRef]
  30. V. V. Rozanov, T. Kurosu, J. P. Burrows, “Retrieval of atmospheric constituents in the uv-visible: a new quasi-analytical approach for the calculation of weighting functions,” J. Quant. Spectrosc. Radiat. Transfer 60, 277–299 (1998). [CrossRef]
  31. J. W. Hovenier, C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere,” Astron. Astrophys. 128, 1–16 (1983).
  32. S. Chandrasekhar, Radiative Transfer (Oxford U. Press, London, 1950).
  33. I. Kus̆c̆er, M. Ribaric̆, “Matrix formalism in the theory of diffusion of light,” Opt. Acta 6, 42–51 (1959). [CrossRef]
  34. M. I. Mischenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, San Diego, Calif., 2000).
  35. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1981).
  36. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  37. J. V. Dave, “A direct solution of the spherical harmonics approximation to the radiative transfer equation for an arbitrary solar elevation. Part I: theory,” J. Atmos. Sci. 32, 790–798 (1975). [CrossRef]
  38. Y. Qin, D. L. B. Jupp, M. A. Box, “Extension of the discrete-ordinate algorithm and efficient radiative transfer calculation,” J. Quant. Spectrosc. Radiat. Transfer 74, 767–781 (2002). [CrossRef]
  39. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  40. G. Marchuk, G. Mikhailov, M. Nazarliev, R. Darbinjan, B. Kargin, B. Elepov, The Monte Carlo Methods in Atmospheric Optics (Springer-Verlag, Heidelberg, 1980).
  41. P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Monte Carlo calculations of lidar returns—procedure and results,” Appl. Phys. Lett. 60, 325–329 (1995).
  42. L. R. Bissonnette, “Multiple-scattering lidar equation,” Appl. Opt. 35, 6449–6465 (1996). [CrossRef] [PubMed]
  43. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  44. E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analytical solution to lidar return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995). [CrossRef]
  45. P. Bruscaglioni, School of Physics, University of Florence, via S. Marta, 3, 50139, Firenze, Italy (personal communication, 1994).
  46. E. P. Zege, I. L. Katsev, I. N. Polonsky, “Effects of multiple scattering in laser sounding of a stratified scattering medium. 2. Peculiarities of sounding of the atmosphere from space,” Izv. Atmos. Ocean. Phys. 34, 227–234 (1998).
  47. K. F. Evans, “The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55, 429–446 (1998). [CrossRef]
  48. V. L. Galinsky, V. Ramanathan, “3D radiative transfer in weakly inhomogeneous medium. Part I: Diffusive approximation,” J. Atmos. Sci. 55, 2946–2959 (1998). [CrossRef]
  49. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited