OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2293–2300

Guided-mode analysis by the Lanczos–Fourier expansion

Panagiota A. Koukoutsaki, Ioannis G. Tigelis, and Alexander B. Manenkov  »View Author Affiliations

JOSA A, Vol. 19, Issue 11, pp. 2293-2300 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Lanczos–Fourier series expansion is employed to analyze the guided-mode field in an asymmetrical slab waveguide, the core of which has an anisotropic and inhomogeneous dielectric permittivity. A system of linear homogeneous equations is derived by the collocation technique with consideration of the wave equation and the appropriate boundary conditions at the interfaces between the core and cladding media. The propagation constants are found from a determinant equation that ensures the existence of a nontrivial solution of the system. Numerical results are presented for several cases of dielectric permittivity, including the constant, parabolic, linear, and anisotropic cases. This approach is found to converge reasonably fast, and Richardson’s extrapolation technique is applied to accelerate the convergence further. The approach can be easily generalized from the scalar to the vector equation, and, as an example, we consider the guided modes of a circular fiber.

© 2002 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(160.1190) Materials : Anisotropic optical materials
(260.1180) Physical optics : Crystal optics

Original Manuscript: March 28, 2002
Revised Manuscript: May 31, 2002
Manuscript Accepted: May 31, 2002
Published: November 1, 2002

Panagiota A. Koukoutsaki, Ioannis G. Tigelis, and Alexander B. Manenkov, "Guided-mode analysis by the Lanczos–Fourier expansion," J. Opt. Soc. Am. A 19, 2293-2300 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981) Chaps. 1–5.
  2. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, London, 1991) Chaps. 1 and 9.
  3. F. Sporleder, H. G. Unger, Waveguide Tapers, Transitions and Couplers (IEE Electromagnetic Waves Series 6, London, 1979).
  4. M. S. Stern, “Semivectorial polarised H-field solutions for dielectric waveguides with arbitrary index profiles,” IEE Proc.-J: Optoelectron. 135, 333–338 (1988).
  5. D. Gómez Pedreira, P. Joly, “Mathematical analysis of a method to compute guided waves in integrated optics,” (Institut National de Recherche en Informatique et en Automatique, Le Chesnay Cedex, France, 2000).
  6. A. Bermudez, D. Gómez Pedreira, P. Joly, “A hybrid approach for the computation of guided modes in integrated optics,” (Institut National de Recherche en Informatique et en Automatique, Le Chesnay Cedex, France, 2001).
  7. S. Sujecki, T. M. Benson, P. Sewell, P. C. Kendall, “Novel vectorial analysis of optical waveguides,” J. Lightwave Technol. 16, 1329–1335 (1998). [CrossRef]
  8. M. N. Armenise, M. De Sario, “Investigation of the guided modes in anisotropic diffused slab waveguide with embedded metal layer,” Fiber Integr. Opt. 3, 197–219 (1980). [CrossRef]
  9. M. N. Armenise, A. G. Perri, “A new technique for analysing light propagation in lithium niobate slab waveguides,” J. Mod. Opt. 35, 947–958 (1988). [CrossRef]
  10. D. Rafizadeh, S.-T. Ho, “Numerical analysis of vectorial wave propagation in waveguides with arbitrary refractive index profiles,” Opt. Commun. 141, 17–20 (1997). [CrossRef]
  11. Z. Cao, J. Yi, Y. Chen, “Analytical investigations of planar optical waveguides with arbitrary index profile,” Opt. Quantum Electron. 31, 637–644 (1999). [CrossRef]
  12. S. S. Patrick, K. J. Webb, “A variational vector finite difference analysis for dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 40, 692–698 (1992). [CrossRef]
  13. A. I. Kleyev, A. B. Manenkov, A. G. Rozhnev, “Numerical methods of calculating dielectric waveguides (or fiber lightguides): special methods (A review),” J. Commun. Technol. Electron. 38, 1–17 (1993).
  14. Y. Chung, N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335–1339 (1990). [CrossRef]
  15. M. N. O. Sadiku, Numerical Techniques in Electromagnetics (CRC Press, Boca Raton, Fla., 1992).
  16. F. Fernandez, Y. Lu, Microwave and Optical Waveguide Analysis by the Finite Element Method (Wiley, New York, 1996).
  17. N. E. Nikolaev, V. V. Shevchenko, “The methods of shift formulas applied to embedded planar optical waveguides,” J. Commun. Technol. Electron. 42, 837–839 (1997).
  18. V. Lancellotti, R. Orta, “Modes of open layered anisotropic waveguides: a numerical method with exponential convergence,” Opt. Quantum Electron. 31, 781–796 (1999). [CrossRef]
  19. C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1956).
  20. C. A. J. Fletcher, Computational Galerkin Methods (Springer-Verlag, New York, 1984).
  21. I. G. Tigelis, A. B. Manenkov, “Scattering from an abruptly terminated asymmetrical slab waveguide,” J. Opt. Soc. Am. A 16, 523–532 (1999). [CrossRef]
  22. V. L. Goncharov, Theory of Function Interpolation and Extrapolation [Gostekhizdat, Moscow, 1954 (in Russian)].
  23. G. E. Forshyte, M. A. Malcolm, C. B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992).
  25. G. N. Watson, A Treatise on the Theory of Bessel Functions (MacMillan, New York, 1944).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited