OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 12 — Dec. 1, 2002
  • pp: 2403–2413

Multiplexed computer-generated holograms with irregular-shaped polygonal apertures and discrete phase levels

Jean-Numa Gillet and Yunlong Sheng  »View Author Affiliations

JOSA A, Vol. 19, Issue 12, pp. 2403-2413 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel type of multiplexed computer-generated hologram (MCGH) with irregular-shaped polygonal apertures and discrete phase levels. Each elementary cell forming the new MCGH is divided into a central aperture and several peripheral apertures. The new MCGH allows us to exploit the huge space–bandwidth product provided by standard lithography technologies. With use of the Abbe transform, the Fraunhofer diffraction patterns from the polygonal apertures and, therefore, the layout coefficients can be computed with simple algebraic expressions. Several symmetries related to the polygonal apertures also facilitate the layout-coefficient computation. In the novel iterative subhologram design algorithm (ISDA), we consider all subholograms equally and apply the image-plane constraint to the total reconstructed image, which is the coherent addition of the subimages from the subholograms. We designed MCGHs with several billions of pixels per period, which cannot be achieved with the classical iterative Fourier transform algorithm, because of the prohibitive computational cost and memory limitation. MCGHs with irregular polygonal apertures and discrete phases, which were designed by the ISDA, reconstruct a desired image of large size with high diffraction efficiencies and low reconstruction errors.

© 2002 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1960) Diffraction and gratings : Diffraction theory
(050.1970) Diffraction and gratings : Diffractive optics
(060.4230) Fiber optics and optical communications : Multiplexing
(070.2590) Fourier optics and signal processing : ABCD transforms
(090.1760) Holography : Computer holography
(090.1970) Holography : Diffractive optics
(090.2890) Holography : Holographic optical elements
(090.4220) Holography : Multiplex holography
(350.6980) Other areas of optics : Transforms

Original Manuscript: March 10, 2002
Revised Manuscript: June 20, 2002
Manuscript Accepted: June 20, 2002
Published: December 1, 2002

Jean-Numa Gillet and Yunlong Sheng, "Multiplexed computer-generated holograms with irregular-shaped polygonal apertures and discrete phase levels," J. Opt. Soc. Am. A 19, 2403-2413 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  2. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980). [CrossRef]
  3. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961–969 (1990). [CrossRef]
  4. F. Wyrowski, O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988). [CrossRef]
  5. N. Yoshikawa, T. Yatagai, “Phase optimization of a kinoform by simulated annealing,” Appl. Opt. 33, 863–868 (1994). [CrossRef] [PubMed]
  6. J. Turunen, A. Vasara, J. Westerholm, “Kinoform phase relief synthesis: a stochastic method,” Opt. Eng. 28, 1162–1167 (1989). [CrossRef]
  7. C. Y. Lu, H. Z. Liao, C. K. Lee, J. S. Wang, “Energy control by linking individual patterns to self-repeating diffractive optical elements,” Appl. Opt. 36, 4702–4712 (1997). [CrossRef] [PubMed]
  8. E. G. Johnson, A. D. Kathman, D. H. Hochmuth, A. Cook, D. R. Brown, B. Delaney, “Advantages of genetic algorithm optimization methods in diffractive optic design,” in Diffractive and Miniaturized Optics, S.-H. Lee, ed., Vol. CR49 of SPIE Critical Review Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 54–74.
  9. J. N. Mait, D. W. Prather, X. Gao, A. Scherer, O. Dial, “Characterization of a binary subwavelength diffractive lens,” in Diffractive Optics and Micro-Optics, Vol. 41 of Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 2000), pp. 108–109.
  10. J.-N. Gillet, Y. Sheng, “Iterative simulated quenching for designing irregular-spot-array generators,” Appl. Opt. 39, 3456–3465 (2000). [CrossRef]
  11. J.-N. Gillet, Y. Sheng, “Irregular spot array generator with trapezoidal apertures of varying heights,” Opt. Commun. 166, 1–7 (1999). [CrossRef]
  12. J.-N. Gillet, “Éléments optiques diffractifs conçus avec des ouvertures trapézoı̈dales et polygonales et de nouveaux algorithmes d’optimisation,” Ph.D. thesis (Université Laval, Québec, PQ, Canada, 2001), Chaps. 1 and 2, pp. 6–62.
  13. W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research, Vol. 41 of Topics in Applied Research, B. R. Frieden, ed. (Springer-Verlag, Berlin, 1980), pp. 291–366.
  14. M. A. McCord, M. J. Rooks, “Electron beam lithography,” in SPIE Handbook of Microlithography, Micromachining and Microfabrication, Vol. 1: Microlithography, P. Rai-Choudhury, ed., SPIE Press Monograph 39 and IEE Materials and Devices Series 12 (SPIE Press, Bellingham, Wash., 1997), Chap. 2, pp. 139–250.
  15. A. Vasara, M. R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt. 31, 3320–3336 (1992). [CrossRef] [PubMed]
  16. O. K. Ersoy, J. Y. Zhuang, J. Brede, “Iterative interlacing approach for synthesis of computer-generated holograms,” Appl. Opt. 31, 6894–6901 (1992). [CrossRef] [PubMed]
  17. J. Komrska, “Simple derivation of formulas for Fraunhofer diffraction at polygonal apertures,” J. Opt. Soc. Am. 72, 1382–1384 (1982). [CrossRef]
  18. R. Straubel, Über die Berechnung der Fraunhoferschen Beregungserscheinungen durch Randintegrale mit Besondere Berücksichtigung der Theorie der Beugung in Heliometer (Frommansche, Jena, Germany, 1888).
  19. J.-N. Gillet, Y. Sheng, “Multiplexed computer-generated hologram with polygonal apertures,” Appl. Opt. 41, 298–307 (2002). [CrossRef] [PubMed]
  20. J.-N. Gillet, “Éléments optiques diffractifs conçus avec des ouvertures trapézoı̈dales et polygonales et de nouveaux algorithmes d’optimisation,” Ph.D. thesis (Université Laval, Québec, PQ, Canada, 2001), Chap. 3, pp. 63–93.
  21. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. rev. (McGraw-Hill, New York, 1986), Chap. 18, pp. 356–384.
  22. W. H. Press, S. A. Teukolski, W. T. Vetterling, B. P. Flannery, Numerical Recipe in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), Chap. 12, pp. 496–536.
  23. J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965). [CrossRef]
  24. J.-N. Gillet, Y. Sheng, “Multiplexing of arbitrary-shaped polygonal apertures with discrete phase levels to design computer-generated holograms,” in Diffractive Optics and Micro-Optics, Vol. 75 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 55–57.
  25. J. N. Mait, “Understanding diffractive optical design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited