OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 12 — Dec. 1, 2002
  • pp: 2436–2444

Hamiltonian orbit structure of the set of paraxial optical systems

Sameen Ahmed Khan and Kurt Bernardo Wolf  »View Author Affiliations


JOSA A, Vol. 19, Issue 12, pp. 2436-2444 (2002)
http://dx.doi.org/10.1364/JOSAA.19.002436


View Full Text Article

Enhanced HTML    Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the paraxial regime of three-dimensional optics, two evolution Hamiltonians are equivalent when one can be transformed to the other modulo scale by similarity through an optical system. To determine the equivalence sets of paraxial optical Hamiltonians one requires the orbit analysis of the algebra sp(4, ℜ) of 4×4 real Hamiltonian matrices. Our strategy uses instead the isomorphic algebra so(3, 2) of 5×5 matrices with metric (+1, +1, +1, -1, -1) to find four orbit regions (strata), six isolated orbits at their boundaries, and six degenerate orbits at their common point. We thus resolve the degeneracies of the eigenvalue classification.

© 2002 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(080.2730) Geometric optics : Matrix methods in paraxial optics

History
Original Manuscript: March 19, 2002
Revised Manuscript: June 19, 2002
Manuscript Accepted: June 19, 2002
Published: December 1, 2002

Citation
Sameen Ahmed Khan and Kurt Bernardo Wolf, "Hamiltonian orbit structure of the set of paraxial optical systems," J. Opt. Soc. Am. A 19, 2436-2444 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-12-2436


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Ozaktas, Z. Zalevsky, M. Alper Kutay, The Fractional Fourier Transform (Wiley, Chichester, UK, 2001).
  2. S. Steinberg, “Lie series, Lie transformations, and their applications,” in Lie Methods in Optics, J. Sánchez-Mondragón, K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Heidelberg, 1986), Chap. 3, pp. 45–102. [CrossRef]
  3. A. J. Dragt, E. Forest, K. B. Wolf, “Foundations of a Lie algebraic theory of geometrical optics,” in Lie Methods in Optics, J. Sánchez-Mondragón, K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Heidelberg, 1986) Chap. 4, pp. 105–158.
  4. R. Simon, K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342–355 (2000). [CrossRef]
  5. R. Simon, K. B. Wolf, “Fractional Fourier transforms in two dimensions,” J. Opt. Soc. Am. A 17, 2368–2381 (2000). [CrossRef]
  6. R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York, 1974).
  7. A. J. Dragt, “Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics,” Nucl. Instrum. Methods Phys. Res. A 258, 339–354 (1987). [CrossRef]
  8. P. A. M. Dirac, “A remarkable representation of the 3+2 de Sitter group,” J. Math. Phys. 4, 901–909 (1963). [CrossRef]
  9. C. Fronsdal, “Elementary particles in a curved space,” Rev. Mod. Phys. 37, 201–223 (1965). [CrossRef]
  10. T. O. Philips, E. P. Wigner, “De Sitter space and positive energy,” in Group Theory and Its Applications, E. M. Loebl, ed. (Academic, New York, 1968), pp. 631–676.
  11. A. J. Laub, K. Meyer, “Canonical forms for symplectic and Hamiltonian matrices,” Celest. Mech. 9, 213–238 (1974). [CrossRef]
  12. J. Patera, R. T. Sharp, P. Winternitz, H. Zassenhaus, “Continuous subgroups of the fundamental groups of physics. III. The de Sitter groups,” J. Math. Phys. 18, 2259–2288 (1977). [CrossRef]
  13. M. Moshinsky, P. Winternitz, “Quadratic Hamiltonians in phase space and their eigenstates,” J. Math. Phys. 21, 1667–1682 (1980). [CrossRef]
  14. J. Patera, P. Winternitz, H. Zassenhaus, “Maximal abelian subalgebras of real and complex symplectic Lie algebras,” J. Math. Phys. 24, 1973–1985 (1983). [CrossRef]
  15. R. Simon, E. C. G. Sudarshan, N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985). [CrossRef] [PubMed]
  16. R. Simon, N. Mukunda, “Optical phase space, Wigner representation, and invariant quality parameters,” J. Opt. Soc. Am. A 17, 342–355 (2000). [CrossRef]
  17. M. Kauderer, Symplectic Matrices, First Order Systems and Special Relativity (World Scientific, Singapore, 1994).
  18. K. B. Wolf, “Dynamical groups for the point rotor and the hydrogen atom,” Nuovo Cimento Suppl. 5, 1041–1050 (1967).
  19. K. B. Wolf, “The group-theoretical treatment of aberrating systems. III. The classification of asymmetric aberrations,” J. Math. Phys. 28, 2498–2507 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited