OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 2 — Feb. 1, 2002
  • pp: 254–265

De Vries–Weber gain control and dark adaptation in human vision

Maarten A. Bouman  »View Author Affiliations

JOSA A, Vol. 19, Issue 2, pp. 254-265 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thresholds for seeing light from a stimulus are determined by a mechanism that pairs subliminal excitations from both halves of a twin unit. Such excitations stem from a package of k1 receptor responses. A half-unit contains one red or one green cone and P rods. The receptor’s “Weber machine” controls the receptor’s gain. Each half of a twin unit contains a “de Vries machine,” which controls the half’s k number. In the dark the receptor’s dark noise events reset its Weber machine and the receptor’s relation to its de Vries machine. A pairing product for light perception also represents a direction event. The local time signs of the two subliminal excitations are crucial for the polarity, size, and pace of the direction event. In relation to the time when and the area in which the stimulus is presented, these signs have average latency periods that depend on intensity and average locations that depend on movement. Polarity depends on which of the two subliminal excitations happens to arrive first at the twin’s pairing facility. The intra- and inter-twin pairings in a persepton for the perceptions of light, edge and movement and the probability summation of the pairing products of the mutually independent three sets of twins of the retrinet improve intensity discrimination. Cross-pairings of intra-receptor pairings in red and green cones of a trion for yellow improve visual discrimination further. Discrimination of stimuli that exploit the model’s entire summation mechanisms and pairing facilities represents “what the perfect human eye sees best.” For the model this threshold of modulation in quantum absorption is the ideal limit that is prescribed by statistical physics. The lateral and meta interaction in a twin unit enhance the contrast of an edge and of a temporal transient. The precision of the local time sign of a half’s stimulation determines the spatiotemporal hyperfunctions for location and speed. The model’s design for the perfect retinal mosaic consists of red twins situated along clockwise and counterclockwise spirals and green twins along circles that are concentric with the fovea. The model’s descriptions of discrimination, adaptation, and hyperfunctions agree with experimental data.

© 2002 Optical Society of America

OCIS Codes
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling

Original Manuscript: March 21, 2001
Revised Manuscript: June 8, 2001
Manuscript Accepted: June 8, 2001
Published: February 1, 2002

Maarten A. Bouman, "De Vries–Weber gain control and dark adaptation in human vision," J. Opt. Soc. Am. A 19, 254-265 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Bouman, “Peripheral contrast thresholds of the human eye,” J. Opt. Soc. Am. 40, 825–832 (1950). [CrossRef]
  2. M. A. Bouman, “Peripheral contrast threshold for various and different wavelengths for adapting field and test stimulus,” J. Opt. Soc. Am. 42, 820–831 (1952). [CrossRef] [PubMed]
  3. M. A. Bouman, “Mechanisms in peripheral dark adaptation,” J. Opt. Soc. Am. 42, 941–950 (1952). [CrossRef] [PubMed]
  4. M. A. Bouman, J. ten Doesschate, “Nervous and photochemical components in visual adaptation,” Ophthalmologica 126, 222–230 (1953). [CrossRef] [PubMed]
  5. M. A. Bouman, G. van den Brink, “Absolute threshold for moving point sources,” J. Opt. Soc. Am. 43, 895–898 (1953). [CrossRef] [PubMed]
  6. G. van den Brink, M. A. Bouman, “Visual contrast thresholds for moving point sources,” J. Opt. Soc. Am. 47, 612–618 (1957). [CrossRef] [PubMed]
  7. F. Fischer, H. K. May, “Invarianzen in der Katzenretina: Gesetzmaessige Beziehungen zwischen Empfindlichkeit, Groesse and Lage rezeptiver Felder von Ganglienzellen,” Exp. Brain Res. 11, 448–464 (1970). [CrossRef]
  8. H. B. Barlow, W. R. Levick, “Coding of light intensity by the cat retina,” in Proceedings of the International School of Physics “Enrico Fermi” (Academic, New York, 1969), pp. 384–396.
  9. M. A. Bouman, C. G. F. Ampt, “Fluctuation theory in vision and its mechanistic model,” in Performance of the Eye at Low Luminances, Vol. 125 of Excerpta Medica, International Congressional Series (Excerpta Medica, Amsterdam, 1965), pp. 57–69.
  10. W. A. van de Grind, M. A. Bouman, “A model of a retinal sampling-unit based on fluctuation theory,” Kybernetik 4, 136–141 (1968). [CrossRef] [PubMed]
  11. M. A. Bouman, “Efficiency and economy in impulse transmission in the visual system,” Acta Psychologica (Amsterdam) 23, 239–241 (1964).
  12. M. A. Bouman, “Quanta noise and vision,” in Theoretical Physics and Biology (North-Holland, Amsterdam, 1969), pp. 246–250.
  13. M. A. Bouman, “My image of the retina,” Q. Rev. Biophys. 2, 25–64 (1969). [CrossRef] [PubMed]
  14. M. A. Bouman, “Spatiotemporal configuration dependent pairing of nerve events in dark-adapted human vision,” J. Opt. Soc. Am. A 19, 241–253 (2002). [CrossRef]
  15. G. van den Brink, M. A. Bouman, “Variation of integrative capacity in time and space: an adaptational phenomenon,” J. Opt. Soc. Am. 44, 614–620 (1954). [CrossRef]
  16. V. Virsu, J. Romavo, “Visual resolution, contrast sensitivity and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1974).
  17. M. A. Bouman, J. J. Koenderink, “Psychophysical basis of coincidence mechanisms in the human visual system,” Rev. Physiol. 65, 126–173 (1972).
  18. F. Ratliff, “Some inter-relations among physics, physiology and psychology in the study of vision,” in Psychology: a Study of a Science (McGraw Hill, New York, 1962), Vol. 4, pp. 417–482.
  19. H. K. Hartline, L. J. Milne, J. H. Wagman, “Fluctuation of response of visual sense cell,” Fed. Proc. 6, 124 (1947).
  20. W. A. van de Grind, J. J. Koenderink, M. A. Bouman, “Models of the processing of quantum signals by the human peripheral retina,” Kybernetik 6, 213–227 (1970). [CrossRef] [PubMed]
  21. W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication, W. A. Rosenblith, ed., (MIT Press, Cambridge, Mass., 1961), pp. 303–319.
  22. F. L. van Nes, J. J. Koenderink, H. Nas, M. A. Bouman, “Spatiotemporal modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 1082–1088 (1967). [CrossRef] [PubMed]
  23. J. J. Koenderink, M. A. Bouman, A. E. Buenos de Mesquita, S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns,” I–IV, J. Opt. Soc. Am. 68, 845–865 (1978). [CrossRef] [PubMed]
  24. P. Verghese, S. P. McKee, N. M. Grzywacz, “Stimulus configuration determines the detectability of motion signals in noise,” J. Opt. Soc. Am. A 17, 1525–1534 (2000). [CrossRef]
  25. G. Westheimer, K. Shimamura, S. P. McKee, “Interference with line-orientation sensitivity,” J. Opt. Soc. Am. 66, 332–338 (1976). [CrossRef] [PubMed]
  26. G. J. C. van der Horst, M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969). [CrossRef] [PubMed]
  27. C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in colour space,” J. Opt. Soc. Am. 73, 1533–1544 (1983). [CrossRef] [PubMed]
  28. F. Rieke, D. A. Baylor, “Molecular origin of continuous dark noise in rod photoreceptors,” Biophys. J. 71, 2553–2572 (1996).
  29. S. A. Burns, A. E. Elsner, “Color matching at high luminance: photopigment optical density and pupil entry,” J. Opt. Soc. Am. 10, 221–230 (1993). [CrossRef]
  30. M. A. Bouman, “Absolute threshold conditions for visual perception,” J. Opt. Soc. Am. 45, 36–43 (1955). [CrossRef] [PubMed]
  31. G. J. C. van der Horst, M. A. Bouman, “On searching for “Mach band type” phenomena in colour vision,” Vision Res. 7, 1027–1029 (1967). [CrossRef] [PubMed]
  32. M. A. Bouman, “On foveal and peripheral interaction in binocular vision,” Opt. Acta 1, 177–183 (1955). [CrossRef]
  33. J. J. Koenderink, “The concept of local sign,” in Limits in Perception, A. J. van Doorn, W. A. van de Grind, J. J. Koenderink, eds. (VNU Science Press, Utrecht, The Netherlands, 1984).
  34. J. J. Koenderink, “Geometrical structures determined by the functional order in nervous nets,” Biol. Cybern. 50, 43–50 (1984). [CrossRef] [PubMed]
  35. S. P. McKee, L. Welch, “Sequential recruitment in the discrimination of velocity,” J. Opt. Soc. Am. A 2, 243–251 (2000). [CrossRef]
  36. A. Roorda, D. R. Williams, G. Y. Yoon, Y. Yamanchi, “The eye optics, the trichromatic cone mosaic and human vision,” Perception 29, Suppl. 43 (2000).
  37. M. Schultze, “Zur Anatomie und Physiologie der Retina,” Arch. Mikr. Anat. 2, 175–286 (1966). [CrossRef]
  38. P. Sheridan, T. Hintz, D. Alexander, “Pseudo-invariant image transformations on hexagonal lattice,” Image Vision Comput. 18, 907–917 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited