OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 2 — Feb. 1, 2002
  • pp: 266–275

Visual performance after correcting the monochromatic and chromatic aberrations of the eye

Geun-Young Yoon and David R. Williams  »View Author Affiliations


JOSA A, Vol. 19, Issue 2, pp. 266-275 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000266


View Full Text Article

Acrobat PDF (434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of technology to measure and correct the eye’s higher-order aberrations, i.e., those beyond defocus and astigmatism, raises the issue of how much visual benefit can be obtained by providing such correction. We demonstrate improvements in contrast sensitivity and visual acuity in white light and in monochromatic light when adaptive optics corrects the eye’s higher-order monochromatic aberrations. In white light, the contrast sensitivity and visual acuity when most monochromatic aberrations are corrected with a deformable mirror are somewhat higher than when defocus and astigmatism alone are corrected. Moreover, viewing conditions in which monochromatic aberrations are corrected and chromatic aberrations are avoided provides an even larger improvement in contrast sensitivity and visual acuity. These results are in reasonable agreement with the theoretical improvement calculated from the eye’s optical modulation transfer function.

© 2002 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

Citation
Geun-Young Yoon and David R. Williams, "Visual performance after correcting the monochromatic and chromatic aberrations of the eye," J. Opt. Soc. Am. A 19, 266-275 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-2-266


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, New York, 1962).
  2. R. H. Webb, C. M. Penney, and K. P. Thompson, “Measurement of ocular wave-front distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992).
  3. J. Liang, B. Grimm, S. Goelz, and J. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
  4. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
  5. J. C. He, S. Marcos, R. H. Webb, and S. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
  6. S. MacRae, “Supernormal vision, hypervision and customized corneal ablation,” J. Cataract. Refract. Surg. 26, 154–157 (1999).
  7. T. Seiler, M. Mrochen, and M. Kaemmerer, “Operative correction of ocular aberrations to improve visual acuity,” J. Refract. Surg. 16, S619–S622 (2000).
  8. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
  9. G. Y. Yoon, I. Cox, and D. R. Williams, “The visual benefit of the static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S40 (1999).
  10. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947).
  11. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
  12. P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30, 187–206 (1990).
  13. A. B. Watson and D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
  14. A. Van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974).
  15. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
  16. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
  17. X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991).
  18. F. L. Van Nes and M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 401–406 (1967).
  19. A. Eisner and D. I. A. MacLeod, “Blue sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980).
  20. V. N. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73, 860–861 (1983).
  21. F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967).
  22. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
  23. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
  24. L. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991).
  25. R. A. Applegate, G. Hilmantel, and L. N. Thibos, “Visual performance assessment,” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, and R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), Chap. 6, pp. 81–92.
  26. J. E. Lovie-Kitchin and B. Brown, “Repeatability and intercorrelations of standard vision tests as a function of age,” Optom. Vision Sci. 77, 412–420 (2000).
  27. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985).
  28. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
  29. D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
  30. L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
  31. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
  32. G. A. Østerberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. 13, 1–97 (1935).
  33. W. H. Miller, “Ocular optical filtering,” in Handbook of Sensory Physiology, H. Autrum, ed. (Springer-Verlag, Berlin, 1979), Vol. VII/6A, pp. 70–143.
  34. C. Yuodelis and A. Hendrikson, “A qualitative analysis of the human fovea during development,” Vision Res. 26, 847–856 (1986).
  35. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. R. Kalia, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
  36. C. A. Curcio, K. R. Sloan, R. R. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
  37. D. R. Williams, “The invisible cone mosaic,” in Advances in Photoreception, Committee on Vision (National Academy Press, Washington D.C., 1990), pp. 135–148.
  38. D. R. Williams, G. Y. Yoon, A. Guirao, H. Hefer, and J. Porter, “How far can we extend the limits of human vision?” in Customized Corneal Ablation: The Quest for SuperVision, S. MacRae, R. Krueger, and R. A. Applegate, eds. (SLACK Inc., Thorofare, N.J., 2001), pp. 11– 32.
  39. W. N. Charman, “Ocular aberration and supernormal vision,” Optician 220, 20–24 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited