OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 2 — Feb. 1, 2002
  • pp: 325–334

Differential theory of gratings made of anisotropic materials

Koki Watanabe, Roger Petit, and Michel Nevière  »View Author Affiliations


JOSA A, Vol. 19, Issue 2, pp. 325-334 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000325


View Full Text Article

Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Arbitrary profiled gratings made with anisotropic materials are discussed; the anisotropic character concerns electric and/or magnetic properties. Our aim is to avoid the use of the staircase approximation of the profile, whose convergence is questionable. A coupled first-order differential-equation set is derived by taking into account Li’s remarks about Fourier factorization [J. Opt. Soc. Am. A <b>13</b>, 1870 (1996)], but the present formulation shows that, in return for a convenient form of the differential system, it is possible to use only the intuitive Laurent rule. Our method, when applied to the simpler case of isotropic gratings, is shown to be consistent with that of previous studies. Moreover, from the numerical point of view, the convergence of our formulation for an anisotropic grating is faster than that of the conventional differential method.

© 2002 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1940) Diffraction and gratings : Diffraction
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2770) Diffraction and gratings : Gratings
(260.1180) Physical optics : Crystal optics
(260.2110) Physical optics : Electromagnetic optics

Citation
Koki Watanabe, Roger Petit, and Michel Nevière, "Differential theory of gratings made of anisotropic materials," J. Opt. Soc. Am. A 19, 325-334 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-2-325


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
  2. G. Tayeb, R. Petit, and M. Cadilhac, “On the theoretical and numerical study of gratings coated with anisotropic layers,” in Optics and the Information Age, H. H. Arsenault, ed., Proc. SPIE 813, 407–408 (1987).
  3. R. Petit, “Diffraction d’une onde plane par un réseau métallique,” Rev. Opt. 45, 353–370 (1966).
  4. G. Cerutti-Maori, R. Petit, and M. Cadilhac, “Etude numérique du champ diffracté par un réseau,” C. R. Acad. Sci. 268, 1060–1063 (1969).
  5. P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.
  6. M. Nevière, “Bragg–Fresnel multilayer gratings: electromagnetic theory,” J. Opt. Soc. Am. A 11, 1835–1845 (1994).
  7. M. C. Hutley, J. P. Verrill, R. C. McPhedran, M. Nevière, and P. Vincent, “Presentation and verification of a differential formulation for the diffraction by conducting gratings,” Nouv. Rev. Opt. 6, 87–95 (1975).
  8. M. Nevière, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide systems,” Opt. Commun. 8, 113–117 (1973).
  9. M. Nevière, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Opt. Commun. 9, 48–53 (1973).
  10. L. Li, “Reformulation of the Fourier modal method for surface-relief grating made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
  11. E. Popov and M. Nevière, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).
  12. G. Tayeb, “Contribution à l’étude de la diffraction des ondes électromagnétiques par des réseaux. Réflexions sur les méthodes existantes et sur leur extension aux milieux anisotropes,” Ph.D. dissertation, No. 90/Aix 3/0065 (University of Aix-Marseille, France, 1990).
  13. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
  14. F. Montiel, M. Nevière, and P. Peyrot, “Waveguide confinement of Cerenkov second-harmonic generation through a graded-index grating coupler: electromagnetic optimization,” J. Mod. Opt. 45, 2169–2186 (1998).
  15. M. Nevière, P. Vincent, and R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opt. 5, 65–77 (1974).
  16. The programming has been carried out by K. Watanabe.
  17. D. Maystre, “Integral methods,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 3, pp. 63–100.
  18. T. O. Korner, J. T. Sheridan, and J. Schwider, “Interferometric resolution examined by means of electromagnetic theory,” J. Opt. Soc. Am. A 12, 752–760 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited