OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 2 — Feb. 1, 2002
  • pp: 404–412

Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations

Carl G. Chen, Paul T. Konkola, Juan Ferrera, Ralf K. Heilmann, and Mark L. Schattenburg  »View Author Affiliations


JOSA A, Vol. 19, Issue 2, pp. 404-412 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000404


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The analysis of many systems in optical communications and metrology utilizing Gaussian beams, such as free-space propagation from single-mode fibers, point diffraction interferometers, and interference lithography, would benefit from an accurate analytical model of Gaussian beam propagation. We present a full vector analysis of Gaussian beam propagation by using the well-known method of the angular spectrum of plane waves. A Gaussian beam is assumed to traverse a charge-free, homogeneous, isotropic, linear, and nonmagnetic dielectric medium. The angular spectrum representation, in its vector form, is applied to a problem with a Gaussian intensity boundary condition. After some mathematical manipulation, each nonzero propagating electric field component is expressed in terms of a power-series expansion. Previous analytical work derived a power series for the transverse field, where the first term (zero order) in the expansion corresponds to the usual scalar paraxial approximation. We confirm this result and derive a corresponding longitudinal power series. We show that the leading longitudinal term is comparable in magnitude with the first transverse term above the scalar paraxial term, thus indicating that a full vector theory is required when going beyond the scalar paraxial approximation. In spite of the advantages of a compact analytical formalism, enabling rapid and accurate modeling of Gaussian beam systems, this approach has a notable drawback. The higher-order terms diverge at locations that are sufficiently far from the initial boundary, yielding unphysical results. Hence any meaningful use of the expansion approach calls for a careful study of its range of applicability. By considering the transition of a Gaussian wave from the paraxial to the spherical regime, we are able to derive a simple expression for the range within which the series produce numerically satisfying answers.

© 2002 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: March 5, 2001
Revised Manuscript: June 20, 2001
Manuscript Accepted: June 20, 2001
Published: February 1, 2002

Citation
Carl G. Chen, Paul T. Konkola, Juan Ferrera, Ralf K. Heilmann, and Mark L. Schattenburg, "Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations," J. Opt. Soc. Am. A 19, 404-412 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-2-404

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited