OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 3 — Mar. 1, 2002
  • pp: 444–457

Description and simulation of an active imaging technique utilizing two speckle fields: root reconstructors

R. B. Holmes, K. Hughes, P. Fairchild, B. Spivey, and A. Smith  »View Author Affiliations


JOSA A, Vol. 19, Issue 3, pp. 444-457 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000444


View Full Text Article

Enhanced HTML    Acrobat PDF (524 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quasi-monochromatic light will form laser speckle upon reflection from a rough object. This laser speckle provides information about the shape of the illuminated object. Further information can be obtained if two colors of coherent light are used, provided that the colors are sufficiently close in wavelength that the interference is also measurable. It is shown that no more than two intensities of two speckle patterns and their interference are required to produce an unambiguous band-limited image of an object, to within an overall spatial translation of the image, in the absence of measurement errors and in the case where all roots of both fields and their complex conjugates are distinct. This result is proven with a root-matching technique, which treats the electric fields as polynomials in the pupil plane, the coefficients of which form the desired complex object. Several root-matching algorithms are developed and tested. These algorithms are generally slow and sensitive to noise. So motivated, several other techniques are applied to the problem, including phase retrieval, expectation maximization, and probability maximization in a sequel paper [J. Opt. Soc. Am. A 19, 458 (2002)]. The phase-retrieval and expectation-maximization techniques proved to be most effective for reconstructions of complex objects larger than 10 pixels across.

© 2002 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging

History
Original Manuscript: February 11, 2001
Revised Manuscript: July 13, 2001
Manuscript Accepted: July 16, 2001
Published: March 1, 2002

Citation
R. B. Holmes, K. Hughes, P. Fairchild, B. Spivey, and A. Smith, "Description and simulation of an active imaging technique utilizing two speckle fields: root reconstructors," J. Opt. Soc. Am. A 19, 444-457 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-3-444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Tatarskii, Wave Propagation in a Turbulent Medium, translated by R. S. Silverman, (McGraw-Hill, New York, 1961).
  2. K. T. Knox, B. J. Thompson, “Recovery of images from astronomically degraded short-exposure photographs,” Astrophys. J. Lett. 193, L45–L48 (1974). [CrossRef]
  3. A. W. Lohmann, G. Weigelt, B. Wirnitzer, “Speckle masking in astronomy: triple correlation theory and applications,” Appl. Opt. 22, 4028–4037 (1983). [CrossRef] [PubMed]
  4. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  5. A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988). [CrossRef]
  6. J. Hardy, J. Lefebvre, C. Koliopoulis, “Real time atmospheric compensation,” J. Opt. Soc. Am. 67, 360–369 (1977). [CrossRef]
  7. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), pp. 9–68.
  8. Paul S. Idell, J. R. Fienup, Ron S. Goodman, “Image synthesis from nonimaged laser-speckle patterns,” Opt. Lett. 12, 858–860 (1987). [CrossRef] [PubMed]
  9. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999), p. 356.
  10. R. A. Hutchin, “Sheared coherent interferometric photography: a technique for lensless imaging,” in Digital Image Recovery and Synthesis II, P. S. Idell, ed., Proc. SPIE2029, 161–168 (1993). [CrossRef]
  11. S. M. Stahl, R. M. Kremer, P. W. Fairchild, K. Hughes, B. A. Spivey, R. Stagat, “Sheared-beam coherent image reconstruction,” in Applications of Digital Image Processing XIX, A. G. Tescher, ed., Proc. SPIE2847, 150–158 (1996). [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics, 7th ed., pp. 572–577 (Cambridge U. Press, Cambridge, UK, 1999).
  13. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 5.
  14. Yu. M. Bruck, L. G. Sodin, “On the ambiguity of the image reconstruction problem,” Opt. Commun. 30, 304–308 (1979). [CrossRef]
  15. H. B. Deighton, M. S. Scivier, M. A. Fiddy, “Solution of the two-dimensional phase-retrieval problem,” Opt. Lett. 10, 250–251 (1985). [CrossRef] [PubMed]
  16. R. G. Lane, W. R. Fright, R. H. T. Bates, “Direct phase retrieval,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 520–525 (1987). [CrossRef]
  17. D. Israelevitz, J. S. Lim, “A new direct algorithm for image reconstruction from Fourier transform magnitude,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 511–519 (1987). [CrossRef]
  18. J. R. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A 4, 118–123 (1987). [CrossRef]
  19. R. G. Lane, R. H. T. Bates, “Automatic multidimensional deconvolution,” J. Opt. Soc. Am. A 4, 180–188 (1987). [CrossRef]
  20. J. R. Fienup, C. C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A 3, 1897–1907 (1986). [CrossRef]
  21. C. C. Wackerman, A. E. Yagle, “Use of Fourier domain real-plane zeros to overcome a phase retrieval stagnation,” J. Opt. Soc. Am. A 8, 1898–1904 (1991). [CrossRef]
  22. C. C. Wackerman, A. E. Yagle, “Phase retrieval and estimation with use of real-plane zeros,” J. Opt. Soc. Am. A 11, 2016–2026 (1994). [CrossRef]
  23. P. J. Bones, C. R. Parker, B. L. Satherley, R. W. Watson, “Deconvolution and phase retrieval with use of zero sheets,” J. Opt. Soc. Am. A 12, 1842–1857 (1995). [CrossRef]
  24. T. J. Schulz, “Multiframe blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10, 1064–1073 (1993). [CrossRef]
  25. R. H. T. Bates, B. K. Quek, C. R. Parker, “Some implications of zero sheets for blind deconvolution and phase retrieval,” J. Opt. Soc. Am. A 7, 468–479 (1990). [CrossRef]
  26. P. Chen, M. A. Fiddy, A. H. Greenaway, Y. Wang, “Zero estimation for blind deconvolution from noisy sampled data,” in Digital Image Recovery and Synthesis II, P. S. Idell, ed., Proc. SPIE2029, 14–22 (1993). [CrossRef]
  27. D. C. Ghiglia, L. A. Romero, G. A. Mastin, “Systematic approach to two-dimensional blind deconvolution by zero-sheet separation,” J. Opt. Soc. Am. A 10, 1024–1036 (1993). [CrossRef]
  28. B. R. Hunt, T. L. Overman, P. Gough, “Image reconstruction from pairs of Fourier transform magnitude,” Opt. Lett. 23, 1123–1125 (1998). [CrossRef]
  29. B. Ya Zeldovich, Principles of Phase Conjugation (Springer-Verlag, New York, 1985), Chap. 3.
  30. M. S. Scivier, M. A. Fiddy, “Phase ambiguities and the zeros of multidimensional band-limited functions,” J. Opt. Soc. Am. A 2, 693–697 (1985). [CrossRef]
  31. E. P. Wallner, “Optimal wave-front correction using slope measurements,” J. Opt. Soc. Am. 73, 1771–1776 (1983). [CrossRef]
  32. J. D. Downie, J. W. Goodman, “Optimal wave-front correction with segmented mirrors,” Appl. Opt. 28, 5326–5332 (1989). [CrossRef] [PubMed]
  33. R. G. Paxman, T. J. Schulz, J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  34. R. Holmes, K. Hughes, P. Fairchild, B. Spivey, A. Smith, “Description and simulation of an active imaging technique utilizing two speckle fields: iterative reconstructors,” J. Opt. Soc. Am. A 19, 458–471 (2002). [CrossRef]
  35. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plan pictures,” Optik 35, 237–246 (1972).
  36. V. S. R. Gudimetla, J. F. Holmes, “Probability density function of the intensity for a laser-generated speckle field after propagation through the turbulent atmosphere,” J. Opt. Soc. Am. 72, 1213–1218 (1982), and references therein. [CrossRef]
  37. M. H. Lee, J. F. Holmes, J. R. Kerr, “Statistics of speckle propagation through the turbulent atmosphere,” J. Opt. Soc. Am. 66, 1164–1172 (1976). [CrossRef]
  38. G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), Eq. 3.19.
  39. P. S. Idell, A. Webster, “Resolution limits for coherent optical imaging: signal-to-noise analysis in the spatial frequency domain,” J. Opt. Soc. Am. A 9, 43–56 (1992). [CrossRef]
  40. R. B. Holmes, B. Spivey, A. Smith, “Recovery of images from two-color, pupil-plane speckle data using object-plane root-matching and pupil-plane error minimiziation,” in Digital Image Reconstruction and Synthesis IV, P. S. Idell, T. J. Schulz, eds., Proc. SPIE3815, 70–89 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited