## Generalized Huygens–Fresnel diffraction integral for misaligned asymmetric first-order optical systems and decentered anisotropic Gaussian Schell-model beams

JOSA A, Vol. 19, Issue 3, pp. 485-490 (2002)

http://dx.doi.org/10.1364/JOSAA.19.000485

Enhanced HTML Acrobat PDF (137 KB)

### Abstract

The generalized Huygens–Fresnel diffraction integral for misaligned asymmetric first-order optical systems is derived by using the canonical operator method, which enables us to study propagation properties of anisotropic Gaussian Schell-model (AGSM) beams through misaligned asymmetric first-order optical systems. It is shown that under the action of misaligned asymmetric first-order optical systems AGSM beams do not preserve the closed property. Therefore generalized partially coherent anisotropic Gaussian Schell-model beams called decentered anisotropic Gaussian Schell-model (DAGSM) beams are introduced, and AGSM beams can be regarded as a special case of DAGSM beams.

© 2002 Optical Society of America

**OCIS Codes**

(050.1940) Diffraction and gratings : Diffraction

(260.1960) Physical optics : Diffraction theory

(350.5500) Other areas of optics : Propagation

**History**

Original Manuscript: January 29, 2001

Revised Manuscript: July 19, 2001

Manuscript Accepted: July 19, 2001

Published: March 1, 2002

**Citation**

Guilin Ding and Baida Lü, "Generalized Huygens–Fresnel diffraction integral for misaligned asymmetric first-order optical systems and decentered anisotropic Gaussian Schell-model beams," J. Opt. Soc. Am. A **19**, 485-490 (2002)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-3-485

Sort: Year | Journal | Reset

### References

- S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
- R. Simon, E. C. G. Sudarshan, N. Mukunda, “Generalized ray in first-order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984). [CrossRef]
- R. Simon, E. C. G. Sudarshan, N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985). [CrossRef] [PubMed]
- S. Lavi, R. Prochaska, E. Keren, “Generalized beam parameters and transformation laws for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988). [CrossRef] [PubMed]
- J. Serna, R. Martinez-Herero, P. M. Mejias, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991). [CrossRef]
- M. A. Porras, J. Alda, E. Bernabeu, “Complex beam parameter and ABCD law of non-Gaussian and nonspherical light beams,” Appl. Opt. 31, 6389–6402 (1992). [CrossRef] [PubMed]
- R. Simon, N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993). [CrossRef]
- A. T. Friberg, E. Tervonen, J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994). [CrossRef]
- G. Nemes, A. E. Siegman, “Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics,” J. Opt. Soc. Am. A 11, 2257–2264 (1994). [CrossRef]
- A. T. Friberg, E. Tervonen, J. Turunen, “Focusing of twisted Gaussian Schell-model beams,” Opt. Commun. 106, 127–132 (1994). [CrossRef]
- M. Santarsiero, “Propagation of generalized Bessel–Gauss beams through ABCD optical systems,” Opt. Commun. 132, 1–7 (1996). [CrossRef]
- B. Lü, H. Ma, B. Zhang, “Propagation properties of cosh-Gaussian beams,” Opt. Commun. 164, 165–170 (1999). [CrossRef]
- G. Ding, X. Yuan, B. Lü, “Propagation characteristics of the ten-parameter family of partially coherent general anisotropic Gaussian Schell-model (AGSM) beams passing through first-order optical systems,” J. Mod. Opt. 47, 1483–1499 (1999).
- R. Simon, N. Mukunda, “Gaussian Schell-model beams and general shape invariance,” J. Opt. Soc. Am. A 16, 2465–2475 (1999). [CrossRef]
- C. Paima, “Decentered Gaussian beams, ray bundles, and Bessel–Gauss beams,” Appl. Opt. 36, 1116–1120 (1997). [CrossRef]
- R. Simon, N. Mukunda, “Gaussian Schell-model beams and general shape invariance,” J. Opt. Soc. Am. A 16, 2465–2475 (1999). [CrossRef]
- B. Lü, S. Luo, B. Zhang, “Propagation of flattened Gaussian beams with rectangular symmetry passing through a paraxial optical ABCD system with and without aperture,” Opt. Commun. 164, 1–6 (1999). [CrossRef]
- M. Nazarathy, A. Hardy, J. Shamir, “Misaligned first-order optics: canonical operator theory,” J. Opt. Soc. Am. A 3, 1360–1369 (1986). [CrossRef]
- A. J. Dragt, E. Forest, K. B. Wolf, “Foundations of a Lie algebraic theory of geometrical optics,” in Lie Methods in Optics, J. Sanchez Mondragon, K. B. Wolf, eds. (Springer-Verlag, Berlin, 1986), p. 105.
- M. Nazarathy, A. Hardy, J. Shamir, “First-order optics—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982). [CrossRef]
- H. Bacry, M. Cadilhac, “Metaplectic group and Fourier optics,” Phys. Rev. A 23, 2533–2536 (1981). [CrossRef]
- M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227–1238 (1986). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.