OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 3 — Mar. 1, 2002
  • pp: 513–518

Coupled multipolar interactions in small-particle metallic clusters

Vitaly N. Pustovit, Juan A. Sotelo, and Gunnar A. Niklasson  »View Author Affiliations

JOSA A, Vol. 19, Issue 3, pp. 513-518 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new formalism for computing the optical properties of small clusters of particles. It is a generalization of the coupled dipole–dipole particle-interaction model and allows one in principle to take into account all multipolar interactions in the long-wavelength limit. The method is illustrated by computations of the optical properties of N=6 particle clusters for different multipolar approximations. We examine the effect of separation between particles and compare the optical spectra with the discrete-dipole approximation and the generalized Mie theory.

© 2002 Optical Society of America

OCIS Codes
(290.2200) Scattering : Extinction
(290.3770) Scattering : Long-wave scattering
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

Original Manuscript: August 22, 2001
Manuscript Accepted: August 24, 2001
Published: March 1, 2002

Vitaly N. Pustovit, Juan A. Sotelo, and Gunnar A. Niklasson, "Coupled multipolar interactions in small-particle metallic clusters," J. Opt. Soc. Am. A 19, 513-518 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Ch. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996). [CrossRef]
  2. Ph. Lambin, A. A. Lucas, J.-P. Vigneron, “Polarization waves and van der Waals cohesion of C60 fullerite,” Phys. Rev. B 46, 1794–1803 (1992). [CrossRef]
  3. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  4. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, R. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996). [CrossRef]
  5. J. M. Gerardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations,” Phys. Rev. B 25, 4204–4229 (1982). [CrossRef]
  6. M. Quinten, U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32, 6173–6182 (1993). [CrossRef] [PubMed]
  7. J. A. Sotelo, G. A. Niklasson, “Optical properties of quasifractal metal nanoparticle aggregates,” Nanostruct. Mater. 12, 135–138 (1999). [CrossRef]
  8. P. C. Waterman, “Numerical solution of electromagnetic scattering problems,” Phys. Rev. D 8, 3661–3678 (1973).
  9. F. Claro, “Theory of resonant modes in particulate matter,” Phys. Rev. B 30, 4989–4999 (1984). [CrossRef]
  10. F. Claro, R. Fuchs, “Optical absorption by clusters of small metallic spheres,” Phys. Rev. B 33, 7956–7960 (1986). [CrossRef]
  11. G. B. Smith, W. E. Vargas, G. A. Niklasson, J. A. Sotelo, A. V. Paley, A. V. Radchik, “Optical properties of a pair of spheres: comparison of different theories,” Opt. Commun. 115, 8–12 (1994). [CrossRef]
  12. A. V. Vagov, A. V. Radchik, G. B. Smith, “Optical response of arrays of spheres from the theory of hypercomplex variables,” Phys. Rev. Lett. 73, 1035–1038 (1994). [CrossRef] [PubMed]
  13. A. V. Radchik, A. V. Paley, G. B. Smith, “Quasistatic optical response of pairs of touching spheres with arbitrary dielectric permeability,” J. Appl. Phys. 73, 3446–3453 (1993). [CrossRef]
  14. L. G. Grechko, K. W. Whites, V. N. Pustovit, V. S. Lysenko, “Macroscopic dielectric response of the metallic particles embedded in host dielectric medium,” Microelectron. Reliability 40(4,5), 893–895 (2000). [CrossRef]
  15. M. Danos, L. C. Maximon, “Multipole matrix elements of the translation operator,” J. Math. Phys. 6, 766–778 (1965). [CrossRef]
  16. O. R. Crusan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).
  17. B. U. Felderhof, G. W. Ford, E. G. D. Cohen, “Two-particle cluster integral,” J. Stat. Phys. 28, 649–672 (1982). [CrossRef]
  18. M. Quinten, U. Kreibig, “Optical properties of aggregates of small metal particles,” Surf. Sci. 172, 557–577 (1986). [CrossRef]
  19. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Material Science Series (Springer, Berlin, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited