OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 3 — Mar. 1, 2002
  • pp: 521–531

Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?

F. Michael Kahnert, Jakob J. Stamnes, and Knut Stamnes  »View Author Affiliations


JOSA A, Vol. 19, Issue 3, pp. 521-531 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000521


View Full Text Article

Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compute the scalar optical properties of size–shape distributions of wavelength-sized randomly oriented homogeneous particles with different nonaxially symmetric geometries and investigate how well they can be modeled with a simple spherical, spheroidal, or cylindrical particle model. We find that a spherical particle model can be used to determine the extinction and scattering cross sections, the single-scattering albedo, and the asymmetry parameter with an error of less than 2%, whereas the extinction-to-backscatter ratio Reb is reproduced only with an error of 9%. The cylindrical and spheroidal particle models yield slightly improved results for Reb that deviate from those obtained for the complex particle ensemble by 7% and 5%, respectively. Large discrepancies between results of the different models are observed for the linear depolarization ratio, thus indicating limitations of models based on simple particle shapes.

© 2002 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.1310) Scattering : Atmospheric scattering
(290.5850) Scattering : Scattering, particles

Citation
F. Michael Kahnert, Jakob J. Stamnes, and Knut Stamnes, "Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?," J. Opt. Soc. Am. A 19, 521-531 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-3-521


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. N. Liou and Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
  2. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).
  3. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
  4. N. V. Voshchinnikov and V. G. Farafonov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993).
  5. M. I. Mishchenko, “Light scattering by size–shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 4652–4665 (1993).
  6. M. I. Mishchenko and L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206–7225 (1994).
  7. F. M. Schulz, K. Stamnes, and J. J. Stamnes, “Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T-matrix computed in spheroidal coordinates,” Appl. Opt. 37, 7875–7896 (1998).
  8. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55, 535–575 (1996).
  9. M. I. Mishchenko and A. Macke, “How big should hexagonal ice crystals be to produce halos?” Appl. Opt. 38, 1626–1629 (1999).
  10. W. J. Wiscombe and A. Mugnai, “Single scattering from nonspherical Chebyshev particles: a compendium of publications,” in NASA Ref. Publ. 1157 (NASA/Goddard Space Flight Center, Greenbelt, Md., 1986).
  11. P. Yang and K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models,” J. Opt. Soc. Am. A 12, 162–176 (1995).
  12. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).
  13. P. Yang and K. N. Liou, “Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm,” J. Opt. Soc. Am. A 14, 2278–2289 (1997).
  14. Y. Mano, “Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method,” Appl. Opt. 39, 5541–5546 (2000).
  15. P. N. Francis, “Some aircraft observations of the scattering properties of ice crystals,” J. Atmos. Sci. 52, 1142–1154 (1995).
  16. M. I. Mishchenko, W. B. Rossow, A. Macke, and A. A. Lacis, “Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape,” J. Geophys. Res. 101, 16973–16985 (1996).
  17. A. Macke, P. N. Francis, G. M. McFarquhar, and S. Kinne, “The role of ice particle shapes and size distributions in single scattering properties of cirrus clouds,” J. Atmos. Sci. 55, 2874–2883 (1998).
  18. P. N. Francis, J. S. Foot, and A. J. Baran, “Aircraft measurements of the solar and infrared radiative properties of cirrus and their dependence on ice crystal shape,” J. Geophys. Res. 104, 31685–31695 (1999).
  19. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).
  20. A. Macke, “Monte Carlo calculations of light scattering by large particles with multiple internal inclusions,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 309–323.
  21. M. Doutriaux-Boucher, J.-C. Buriez, G. Brogniez, L. C.-Labonnote, and A. J. Baran, “Sensitivity of retrieved POLDER directional cloud optical thickness to various ice particle models,” Geophys. Res. Lett. 27, 109–112 (2000).
  22. K. A. Fuller and D. W. Mackowski, “Electromagnetic scattering by compounded spherical particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 226–273.
  23. P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 274–308.
  24. K. Muinonen, “Light scattering by stochastically shaped particles,” in Light Scattering by Nonspherical particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 323–354.
  25. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
  26. F. M. Schulz, K. Stamnes, and J. J. Stamnes, “Shape-dependence of the optical properties in size–shape distributions of randomly oriented prolate spheroids, including highly elongated shapes,” J. Geophys. Res. 104, 9413–9421 (1999).
  27. F. M. Schulz, K. Stamnes, and J. J. Stamnes, “Modeling the radiative transfer properties of media containing particles of moderately and highly elongated shape,” Geophys. Res. Lett. 25, 4481–4484 (1998).
  28. P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Opt. 39, 3727–3737 (2000).
  29. K. Lumme and J. Rahola, “Comparison of light scattering by stochastically rough spheres, best-fit spheroids and spheres,” J. Quant. Spectrosc. Radiat. Transf. 60, 439–450 (1998).
  30. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Application of the extended boundary condition method to homogeneous particles with point-group symmetries,” Appl. Opt. 40, 3110–3123 (2001).
  31. N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt. 31, 5359–5365 (1992).
  32. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
  33. D. M. Bishop, Group Theory and Chemistry (Dover, Mineola, N.Y., 1993).
  34. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
  35. F. M. Schulz, K. Stamnes, and J. J. Stamnes, “Point group symmetries in electromagnetic scattering,” J. Opt. Soc. Am. A 16, 853–865 (1999).
  36. T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quant. Spectrosc. Radiat. Transf. 60, 411–423 (1998).
  37. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
  38. B. T. Draine, “The discrete dipole approximation for light scattering by irregular targets,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 131–144.
  39. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  40. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).
  41. T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697–31709 (1999).
  42. N. T. Zakharova and M. I. Mishchenko, “Scattering properties of needle-like and plate-like ice spheroids with moderate size parameters,” Appl. Opt. 39, 5052–5057 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited