OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 3 — Mar. 1, 2002
  • pp: 549–557

Invariant identification of material mixtures in airborne spectrometer data

Pei-hsiu Suen and Glenn Healey  »View Author Affiliations


JOSA A, Vol. 19, Issue 3, pp. 549-557 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000549


View Full Text Article

Enhanced HTML    Acrobat PDF (961 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an algorithm for identifying linear mixtures of a specified set of materials in 0.4–2.5 µm airborne imaging spectrometer data. The algorithm is invariant to the illumination and atmospheric conditions and the relative amounts of the specified materials within a pixel. Only the spectral reflectance functions for the specified materials are required by the algorithm. Invariance over illumination and atmospheric conditions is achieved by incorporating a physical model for scene variability in the constrained optimization formulation. The algorithm also computes estimates of the amounts of the specified materials in identified mixtures. We demonstrate the effectiveness of the algorithm by using real and synthetic Hyperspectral Digital Imaging Collection Experiment imagery acquired over a range of conditions and altitudes.

© 2002 Optical Society of America

OCIS Codes
(150.0150) Machine vision : Machine vision
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: March 6, 2001
Revised Manuscript: July 11, 2001
Manuscript Accepted: April 19, 2001
Published: March 1, 2002

Citation
Pei-hsiu Suen and Glenn Healey, "Invariant identification of material mixtures in airborne spectrometer data," J. Opt. Soc. Am. A 19, 549-557 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-3-549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Basedow, D. C. Armer, M. E. Anderson, “HYDICE system: implementation and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 258–267 (1995). [CrossRef]
  2. C. G. Simi, S. G. Beaven, E. M. Winter, C. LaSota, J. Parish, R. Dixon, “Night vision imaging spectrometer (NVIS) performance parameters and their impact on various detection algorithms,” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Shen, M. R. Descours, eds., Proc. SPIE4049, 218–229 (2000). [CrossRef]
  3. G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, W. Porter, “The airborne visible infrared imaging spectrometer,” Remote Sens. Environ. 44, 127–143 (1993). [CrossRef]
  4. A. F. H. Goetz, G. Vane, J. Solomon, B. Rock, “Imaging spectrometry for earth remote sensing,” Science 228, 4704 (1985). [CrossRef]
  5. G. Healey, D. Slater, “Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions,” IEEE Trans. Geosci. Remote Sens. 37, 2706–2717 (1999). [CrossRef]
  6. W. Aldrich, M. Kappus, R. Resmini, P. Mitchell, “HYDICE post-flight data processing,” in Algorithms for Multispectral and Hyperspectral Imagery II, A. Iverson, ed., Proc. SPIE2758, 354–363 (1996). [CrossRef]
  7. T. Chrien, R. Green, M. Eastwood, “Accuracy of the spectral and radiometric laboratory calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 37–49 (1990). [CrossRef]
  8. J. Adams, M. Smith, P. Johnson, “Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site,” J. Geophys. Res. [Solid Earth] 91, 8098–8112 (1986). [CrossRef]
  9. P. Johnson, M. Smith, J. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. [Planets] 97, 2649–2658 (1992). [CrossRef]
  10. K. Y. Tsang, J. Grossman, P. Palmadesso, J. Antoniades, M. Baumbeck, J. Bowles, M. Daniel, J. Fisher, D. Haas, “Evaluation of endmember selection techniques and performance results from ORASIS hyperspectral analysis,” in Algorithms for Multispectral and Hyperspectral Imagery IV, S. S. Shen, M. R. Descours, eds., Proc. SPIE3372, 43–50 (1998). [CrossRef]
  11. J. Conel, R. O. Green, G. Vane, C. Bruegge, R. Alley, “Radiometric spectral characteristics and comparison of ways to compensate for the atmosphere,” in Imaging Spectrometry II, G. Vane, ed., Proc. SPIE834, 140–157 (1987). [CrossRef]
  12. B. C. Gao, K. Heidebrecht, A. F. H. Goetz, “Derivation of scaled surface reflectances from AVIRIS data,” Remote Sens. Environ. 44, 165–178 (1993). [CrossRef]
  13. R. O. Green, J. Conel, D. Roberts, “Estimation of aerosol optical depth, pressure evaluation, water vapor and calculation of apparent surface reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) using a radiative transfer code,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 2–11 (1993). [CrossRef]
  14. F. A. Kruse, A. B. Lefkoff, J. B. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data,” Remote Sens. Environ. 44, 145–163 (1993). [CrossRef]
  15. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” (Geophysics Laboratory, Bedford, Mass., 1989).
  16. J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford U. Press, New York, 1997).
  17. R. Duda, P. Hart, Pattern Classification and Scene Analysis (Wiley-Interscience, New York, 1973).
  18. P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, New York, 1981).
  19. L. Kaufman, J. Hodgins, “IQP—quadratic programming,” in PORT Mathematical Subroutine Library, 3rd ed., P. A. Fox, ed. (AT&T Bell Telephone Laboratories, Inc., Murray Hill, N.J., 1997) ( http://www.bell-labs.com/project/PORT ).
  20. G. H. Golub, C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited