OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 3 — Mar. 1, 2002
  • pp: 610–619

Analysis of optical waveguide structures by use of a combined finite-difference/finite-difference time-domain method

Jon W. Wallace and Michael A. Jensen  »View Author Affiliations


JOSA A, Vol. 19, Issue 3, pp. 610-619 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000610


View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for full-wave characterization of optical waveguide structures. The method computes mode-propagation constants and cross-sectional field profiles from a straightforward discretization of Maxwell’s equations. These modes are directly excited in a three-dimensional finite-difference time-domain simulation to obtain optical field transmission and reflection coefficients for arbitrary waveguide discontinuities. The implementation uses the perfectly-matched-layer technique to absorb both guided modes and radiated fields. A scattered-field formulation is also utilized to allow accurate determination of weak scattered-field strengths. Individual three-dimensional waveguide sections are cascaded by S-parameter analysis. A complete 104-section Bragg resonator is successfully simulated with the method.

© 2002 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(060.2310) Fiber optics and optical communications : Fiber optics
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides

History
Original Manuscript: May 4, 2001
Revised Manuscript: August 7, 2001
Manuscript Accepted: August 7, 2001
Published: March 1, 2002

Citation
Jon W. Wallace and Michael A. Jensen, "Analysis of optical waveguide structures by use of a combined finite-difference/finite-difference time-domain method," J. Opt. Soc. Am. A 19, 610-619 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-3-610


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Marcuse, “Tilt, offset, and end-separation loss of lowest-order slab waveguide mode,” J. Lightwave Technol. LT-4, 1647–1650 (1986). [CrossRef]
  2. S. I. Hosain, J.-P. Meunier, Z. H. Wang, “Coupling efficiency of butt-jointed planar waveguides with simultaneous tilt and transverse offset,” J. Lightwave Technol. 14, 901–907 (1996). [CrossRef]
  3. M. D. Feit, J. A. Fleck, “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt. 19, 1154–1164 (1980). [CrossRef] [PubMed]
  4. W. Huang, C. Xu, S.-T. Chu, S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992). [CrossRef]
  5. P. Lüsse, P. Stuwe, J. Schüle, H. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–493 (1994). [CrossRef]
  6. C. L. Xu, W. P. Huang, M. S. Stern, S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc.: Optoelectron. 141, 281–285 (1994).
  7. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  8. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).
  9. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  10. H. E. Hernández-Figueroa, F. A. Fernández, J. B. Davies, “Finite element approach for the modal analysis of open-boundary waveguides,” Electron. Lett. 30, 2031–2032 (1994). [CrossRef]
  11. J. W. Wallace, M. A. Jensen, “An FD/FDTD method for optical waveguide modeling,” in Proceedings of the 2000 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. 3, pp. 1380–1383.
  12. F. Girardin, G.-H. Duan, A. Talneau, “Modeling and measurement of spatial-hole-burning applied to amplitude modulated coupling distributed feedback lasers,” IEEE J. Quantum Electron. 31, 834–841 (1995). [CrossRef]
  13. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B 35, 7454–7463 (1987). [CrossRef]
  14. D. E. Aspnes, A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983). [CrossRef]
  15. B. Jensen, A. Torabi, “Refractive index of quaternary In1-xGaxAsyP1-y lattice matched to InP,” J. Appl. Phys. 54, 3623–3625 (1983). [CrossRef]
  16. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981). [CrossRef]
  17. K. K. Mei, J. Fang, “Superabsorption—a method to improve absorbing boundary conditions,” IEEE Trans. Antennas Propag. 40, 1001–1010 (1992). [CrossRef]
  18. S. D. Gedney, “Anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
  19. C. M. Rappaport, “Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space,” IEEE Microwave Guid. Wave Lett. 5, 90–92 (1995). [CrossRef]
  20. M. Okoniewski, M. A. Stuchly, M. Mrozowski, J. DeMoerloose, “Modal PML,” IEEE Microwave Guid. Wave Lett. 7, 33–35 (1997). [CrossRef]
  21. S. L. Dvorak, “Exact, closed-form expressions for transient fields in homogeneously filled waveguides,” IEEE Trans. Microwave Theory Tech. 42, 2164–2170 (1994). [CrossRef]
  22. M.-J. Park, S. Nam, “FDTD modal field generation and absorption in homogeneous waveguides with arbitrary cross section,” in Proceedings of the 1996 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 2, pp. 1308–1311.
  23. C.-N. Kuo, T. Itoh, B. Houshmand, “Synthesis of absorbing boundary condition with digital filter bank,” in Proceedings of the 1996 IEEE Microwave Theory and Techniques Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 2, pp. 1043–1046.
  24. M. Chen, B. Houshmand, T. Itoh, “FDTD analysis of a metal-strip-loaded dielectric leaky-wave antenna,” IEEE Trans. Antennas Propag. 45, 1294–1301 (1997). [CrossRef]
  25. M. A. Gribbons, W. P. Pinello, A. C. Cangellaris, “Stretched coordinate technique for numerical absorption of evanescent and propagating waves in planar waveguiding structures,” in Proceedings of the 1995 IEEE Microwave Theory and Techniques Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 1, pp. 31–34.
  26. G. Gonzalez, Microwave Transistor Amplifiers (Prentice-Hall, Upper Saddle River, N.J., 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited