OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 3 — Mar. 1, 2002
  • pp: 620–628

Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes: erratum

Antonio Guirao, Jason Porter, David R. Williams, and Ian G. Cox  »View Author Affiliations


JOSA A, Vol. 19, Issue 3, pp. 620-628 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000620


View Full Text Article

Enhanced HTML    Acrobat PDF (735 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Figure 5 was incorrectly printed when this paper was published [J. Opt. Soc. Am. A 19, 1–9 (2002)]. Because the authors believe that the appearance of the wrong figure severely compromised the continuity of their scientific presentation, we are republishing the paper in its entirety. We calculated the impact of higher-order aberrations on retinal image quality and the magnitude of the visual benefit expected from their correction in a large population of human eyes. Wave aberrations for both eyes of 109 normal subjects and 4 keratoconic patients were measured for 3-, 4-, and 5.7-mm pupils with a Shack–Hartmann sensor. Retinal image quality was estimated by means of the modulation transfer function (MTF) in white light. The visual benefit was calculated as the ratio of the MTF when the monochromatic higher-order aberrations are corrected to the MTF corresponding to the best correction of defocus and astigmatism. On average, the impact of the higher-order aberrations for a 5.7-mm pupil in normal eyes is similar to an equivalent defocus of ∼0.3 D. The average visual benefit for normal eyes at 16 c/deg is ∼2.5 for a 5.7-mm pupil and is negligible for small pupils (1.25 for a 3-mm pupil). The benefit varies greatly among eyes, with some normal eyes showing almost no benefit and others a benefit higher than 4 at 16 c/deg across a 5.7-mm pupil. The benefit for keratoconic eyes is much larger. The benefit at 16 c/deg is 12 and 3 for 5.7- and 3-mm pupils, respectively, averaged across four keratoconics. These theoretical benefits could be realized in normal viewing conditions but only under specific conditions.

© 2002 Optical Society of America

OCIS Codes
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7310) Vision, color, and visual optics : Vision

History
Original Manuscript: January 2, 2001
Revised Manuscript: May 7, 2001
Manuscript Accepted: June 13, 2001
Published: March 1, 2002

Citation
Antonio Guirao, Jason Porter, David R. Williams, and Ian G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes: erratum," J. Opt. Soc. Am. A 19, 620-628 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-3-620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 7, 766–795 (1962).
  2. G. Van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233–244 (1962). [CrossRef]
  3. F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel Press, Newcastle, Pa., 1969), pp. 375–386.
  4. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977). [CrossRef] [PubMed]
  5. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984). [CrossRef] [PubMed]
  6. P. Artal, J. Santamarı́a, J. Bescós, “Retrieval of wave aberration of human eyes from actual point-spread-function data,” J. Opt. Soc. Am. A 5, 1201–1206 (1988). [CrossRef] [PubMed]
  7. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  8. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  9. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997). [CrossRef]
  10. P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “A measuring device for the assessment of monochromatic aberrations in human eyes,” Ophthalmologie 94, 441–445 (1997). [CrossRef]
  11. I. Iglesias, M. E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998). [CrossRef]
  12. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998). [CrossRef]
  13. F. Flamant, “Etude de la repartition de lumière dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).
  14. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965). [PubMed]
  15. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966). [PubMed]
  16. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395–412 (1974). [CrossRef]
  17. D. R. Williams, D. Brainard, M. MacHahon, R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994). [CrossRef]
  18. P. Artal, R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994). [CrossRef]
  19. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995). [CrossRef]
  20. N. López-Gil, P. Artal, “Comparison of double-pass estimates of the retinal image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997). [CrossRef]
  21. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  22. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  23. G. Y. Yoon, I. Cox, D. R. Williams, “The visual benefit of static correction of the monochromatic wave aberration,” Invest. Ophthalmol. Visual Sci. 40, B171 (1999).
  24. G.-Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations in the eye,” J. Opt. Soc. Am. A (to be published).
  25. S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000). [PubMed]
  26. M. Mrochen, M. Kaemmerer, T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refract. Surg. 27, 201–207 (2001). [CrossRef] [PubMed]
  27. S. Marcos, “Refractive surgery and optical aberrations,” Opt. Photon. News, January2001, pp. 22–25.
  28. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “The human eye’s monochromatic aberrations in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  29. American National Standard for the Safe Use of Lasers ANSI Z136.1. (Laser Institute of America, Orlando, Fla., 1993).
  30. F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1967). [PubMed]
  31. L. N. Thibos, A. Bradley, X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599–607 (1991). [CrossRef]
  32. G. Wald, D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947). [CrossRef] [PubMed]
  33. S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999). [CrossRef]
  34. P. Mouroulis, H. Zhang, “Visual instrument image quality metrics and the effects of coma and astigmatism,” J. Opt. Soc. Am. A 9, 34–42 (1992). [CrossRef] [PubMed]
  35. W. B. King, “Dependence of the Strehl ratio on the magnitude of the variance of the wave aberration,” J. Opt. Soc. Am. 58, 655–661 (1968). [CrossRef]
  36. A. Guirao, D. R. Williams, “Higher-order aberrations in the eye and the best subjective refraction,” Invest. Ophthalmol. Visual Sci. 42, S98 (2001).
  37. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985). [CrossRef] [PubMed]
  38. P. Artal, H. Hofer, D. R. Williams, J. L. Aragon, “Dynamics of ocular aberrations during accommodation,” Presented at the 1999 OSA Annual Meeting, Santa Clara, California, September 26–October 1, 1999.
  39. C. A. Johnson, “Effects of luminance and stimulus distance on accommodation and visual resolution,” J. Opt. Soc. Am. 66, 138–142 (1976). [CrossRef] [PubMed]
  40. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001). [CrossRef]
  41. P. Artal, M. Ferro, I. Miranda, R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662 (1993). [CrossRef] [PubMed]
  42. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  43. A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998). [CrossRef] [PubMed]
  44. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).
  45. A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000). [CrossRef]
  46. P. Artal, A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998). [CrossRef]
  47. M. E. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the corneal and the internal ocular surfaces to the changes in the aberrations with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).
  48. P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1(1), 1–8 (2001). http://journalofvision.org/1/1/1 , DOI 10.1167/1.1.1. [CrossRef]
  49. A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001). [CrossRef]
  50. W. N. Charman, J. Tucker, “Accommodation and color,” J. Opt. Soc. Am. 68, 459–471 (1978). [CrossRef] [PubMed]
  51. P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, S. Mathews, “Small amounts of chromatic aberrations influence dynamic accommodation,” Optom. Vision Sci. 72, 656–666 (1995). [CrossRef]
  52. B. J. Wilson, K. E. Decker, A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” Invest. Ophthalmol. Visual Sci. 41, S427 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited