OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 657–669

Videokeratoscope–line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations

Thomas O. Salmon and Larry N. Thibos  »View Author Affiliations


JOSA A, Vol. 19, Issue 4, pp. 657-669 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000657


View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A growing number of research laboratories are using the new technologies of videokeratoscopy and Shack–Hartmann aberrometry, in combination, to study the optical structure of the human eye. A potential source of error arises, however, because the two instruments are designed to measure the human eye along different reference axes. The Shack–Hartmann aberrometer is usually aligned coaxially with the line of sight, but videokeratoscopes usually are not. Thus far, corneal optics research has not adequately addressed the problem of videokeratoscope–line-of-sight misalignment and its effect on the computation of corneal and internal ocular aberrations. We measured corneal, ocular, and internal aberrations for three normal human eyes, developed a method to compensate for videokeratoscope–line-of-sight misalignment, and analyzed the importance of compensating for the misalignment. Our results show that when the value of angle lambda (the angle between the line of sight and the pupillary axis) is larger than 2°–3°, the misalignment, if ignored, can lead to incorrect estimates of corneal and internal aberrations as well as the corneal/internal aberration balance.

© 2002 Optical Society of America

OCIS Codes
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5370) Vision, color, and visual optics : Physiological optics
(330.6130) Vision, color, and visual optics : Spatial resolution
(330.7310) Vision, color, and visual optics : Vision

History
Original Manuscript: March 13, 2001
Revised Manuscript: September 4, 2001
Manuscript Accepted: September 4, 2001
Published: April 1, 2002

Citation
Thomas O. Salmon and Larry N. Thibos, "Videokeratoscope–line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations," J. Opt. Soc. Am. A 19, 657-669 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-4-657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 19, 23–88 (1801). [CrossRef]
  2. S. El Hage, F. Berny, “Contribution of the crystaline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973). [CrossRef]
  3. M. Millodot, J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979). [CrossRef] [PubMed]
  4. A. Tomlinson, R. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).
  5. P. Artal, A. Guirao, “Contribution of the cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998). [CrossRef]
  6. J. He, E. Ong, J. Gwiazda, R. Held, F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).
  7. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  8. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  9. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  10. T. Salmon, L. Thibos, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998). [CrossRef]
  11. S. Klein, “Optimal corneal ablation for eyes with arbitrary Hartmann–Shack aberrations,” J. Opt. Soc. Am. A 15, 2580–2588 (1998). [CrossRef]
  12. L. Thibos, X. Hong, “Clinical application of the Shack–Hartmann aberrometer,” Optom. Vision Sci. 76, 817–825 (1999). [CrossRef]
  13. P. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  14. E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000). [CrossRef]
  15. L. Thibos, “Principles of Hartmann–Shack aberrometry,” J. Refract. Surg. 16, S563–S565 (2000). [PubMed]
  16. T. Salmon, L. Thibos, “Relative contribution of the cornea and internal optics to the aberrations of the eye,” Optom. Vision Sci. 75(12s), 235 (1998).
  17. T. Salmon, L. Thibos, “Relative balance of corneal and internal aberrations in the human eye,” presented at the OSA Annual Meeting, October 4–9, 1998, Baltimore, Maryland.
  18. M. Berrio, A. Guirao, M. Redondo, P. Piers, P. Artal, “The contribution of the cornea and internal ocular surfaces to the changes in the aberrations of the eye with age,” Invest. Ophthalmol. Visual Sci. 41, S105 (2000).
  19. P. Artal, A. Guirao, E. Berrio, D. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001). [CrossRef]
  20. R. B. Mandell, “The enigma of the corneal contour,” Contact Lens Assoc. Opthalmol. J. 18, 267–273 (1992).
  21. R. Mandell, D. Horner, “Alignment of videokeratoscopes,” in An Atlas of Corneal Topography, D. Sanders, D. Kock, eds. (SLACK Inc., Thorofare, N.J., 1993), pp. 197–204.
  22. R. Mandell, C. Chiang, S. Klein, “Location of the major corneal reference points,” Optom. Vision Sci. 72, 776–784 (1995). [CrossRef]
  23. R. Mandell, “Locating the corneal sighting center from videokeratography,” J. Refract. Surg. 11, 253–259 (1995). [PubMed]
  24. A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000). [CrossRef]
  25. R. Applegate, L. Thibos, A. Bradley, S. Marcos, A. Roorda, T. Salmon, D. Atchison, “Reference axis selection: a subcommittee report of the OSA working group to establish standards for the measurement and reporting of the optical aberration of the eye,” in Vision Science and Its Applications, V. Lakshminaranayan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 2000), pp. 147–149.
  26. D. Horner, T. Salmon, “Accuracy of the EyeSys 2000 in measuring surface elevation of calibrated aspheres,” Int. Contact Lens Clin. 25, 171–177 (1998). [CrossRef]
  27. T. Salmon, C. Rash, J. Mora, “Videokeratoscopic accuracy and its potential use in corneal optics research,” (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 1998).
  28. R. Applegate, R. Nunez, J. Buettner, H. Howland, “How accurately can videokeratographic systems measure surface elevation?” Optom. Vision Sci. 72, 785–792 (1995). [CrossRef]
  29. W. A. Douthwaite, “EyeSys corneal topography measurement applied to calibrated ellipsoidal convex surfaces,” Br. J. Ophthamol. 79, 797–801 (1995). [CrossRef]
  30. K. L. Cohen, N. K. Tripoli, D. E. Holmgren, J. M. Coggins, “Assessment of the power and height of radial aspheres reported by a computer-assisted keratoscope,” Am. J. Ophthalmol. 119, 723–732 (1995). [PubMed]
  31. A. Guirao, P. Artal, “Corneal wave aberration from videokeratoscopy: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000). [CrossRef]
  32. J. Greivenkamp, M. Mellinger, R. Snyder, J. Schwiegerling, A. Lowman, J. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996). [PubMed]
  33. G. Hilmantel, R. Blunt, B. Garret, H. Howland, R. Applegate, “Accuracy of the Tomey topographic modeling system in measuring surface elevations of asymmetric objects,” Optom. Vision Sci. 76, 108–114 (1999). [CrossRef]
  34. H. Howland, J. Buettner, R. Applegate, “Computation of the shapes of normal corneas and their monochromatic aberrations from videokeratometric measurements,” in Vision Science and Its Applications, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 54–57.
  35. C. Martinez, R. Applegate, S. Klyce, M. McDonald, J. Medina, H. Howland, “Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. 116, 1053–1062 (1998). [CrossRef] [PubMed]
  36. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. ElDanasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999). [CrossRef] [PubMed]
  37. L. Thibos, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992). [CrossRef] [PubMed]
  38. R. Hemenger, A. Tomlinson, K. Oliver, “Corneal optics from videokeratographs,” Ophthalmic Physiol. Opt. 15, 63–68 (1994). [CrossRef]
  39. K. Oliver, R. Hemenger, M. Corbett, D. O’Brart, S. Verma, J. Marshall, A. Tomlinson, “Corneal optical aberrations induced by photorefractive keratectomy,” J. Refract. Surg. 13, 246–254 (1997). [PubMed]
  40. L. N. Thibos, Y. Ming, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–565 (1997). [CrossRef]
  41. L. Thibos, R. Applegate, J. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of the eye,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.
  42. American National Standards Institute, American National Standard for the Safe Use of Lasers (American National Standards Institute–Laser Institute of America, New York, 1993).
  43. L. Thibos, W. Wheeler, D. Horner, “Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,” Optom. Vision Sci. 74, 367–375 (1997). [CrossRef]
  44. K. Zadnik, D. Mutti, A. Adams, “The repeatability of measurements of the ocular components,” Invest. Ophthalmol. Visual Sci. 33, 2325–2333 (1992).
  45. E. Gudmundsdottir, F. Jonasson, E. Stefansson, H. Sasaki, K. Sasaki, “Corneal and total astigmatism by age. Does the lens compensate for corneal astigmatism? Reykjavik eye study,” Invest. Ophthalmol. Visual Sci. 41, S303 (2000).
  46. T. Oshika, S. Klyce, R. Applegate, H. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).
  47. T. Salmon, C. van de Pol, N. Jones, “ORBSCAN accuracy in measuring corneal surface elevation,” (U.S. Army Aeromedical Research Laboratory, Fort Rucker, Ala., 2000).
  48. T. Salmon, “Corneal contribution to the wavefront aberration of the eye,” Ph.D. thesis (Indiana University, Bloomington, Ind., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited