OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 670–677

Comparison of the spatial-frequency selectivity of local and global motion detectors

Peter J. Bex and Steven C. Dakin  »View Author Affiliations


JOSA A, Vol. 19, Issue 4, pp. 670-677 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000670


View Full Text Article

Enhanced HTML    Acrobat PDF (731 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Convergent physiological and behavioral evidence indicates that the initial receptive fields responsible for motion detection are spatially localized. Consequently, the perception of global patterns of movement (such as expansion) requires that the output of these local mechanisms be integrated across visual space. We have differentiated local and global motion processes, with mixtures of coherent and incoherent moving patterns composed of bandpass filtered dots, and have measured their spatial-frequency selectivity. We report that local motion detectors show narrow-band spatial-frequency tuning (i.e., they respond only to a narrow range of spatial frequencies) but that global motion detectors show broadband spatial-frequency tuning (i.e., they integrate across a broad range of spatial frequencies), with a preference for low spatial frequencies.

© 2002 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.6110) Vision, color, and visual optics : Spatial filtering

History
Original Manuscript: April 6, 2001
Revised Manuscript: September 14, 2001
Manuscript Accepted: August 8, 2001
Published: April 1, 2002

Citation
Peter J. Bex and Steven C. Dakin, "Comparison of the spatial-frequency selectivity of local and global motion detectors," J. Opt. Soc. Am. A 19, 670-677 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-4-670


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).
  2. R. H. Wurtz, “Visual receptive fields of striate cortex neurons in awake monkeys,” J. Neurophysiol. 32, 727–742 (1969). [PubMed]
  3. P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1399 (1976). [PubMed]
  4. S. J. Anderson, D. C. Burr, “Receptive field size of human motion detection units,” Vision Res. 27, 621–635 (1987). [CrossRef] [PubMed]
  5. P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995). [CrossRef] [PubMed]
  6. P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996). [CrossRef]
  7. D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978). [CrossRef] [PubMed]
  8. T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992). [CrossRef] [PubMed]
  9. M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995). [CrossRef]
  10. M. C. Morrone, D. C. Burr, S. Di Pietro, “Cardinal directions for visual optic flow,” Curr. Biol. 9, 763–766 (1999). [CrossRef] [PubMed]
  11. D. C. Burr, M. C. Morrone, L. M. Vaina, “Large receptive fields for optic flow detection in humans,” Vision Res. 38, 1731–1743 (1998). [CrossRef] [PubMed]
  12. K. Gurney, M. J. Wright, “Rotation and radial motion thresholds support a two-stage model of differential-motion analysis,” Perception 25, 5–26 (1996). [CrossRef]
  13. M. Lappe, J. P. Rauschecker, “An illusory transformation in a model of optic flow processing,” Vision Res. 35, 1619–1631 (1995). [CrossRef] [PubMed]
  14. R. J. Snowden, A. B. Milne, “Phantom motion aftereffects—evidence of detectors for the analysis of optic flow,” Curr. Biol. 7, 717–722 (1997). [CrossRef] [PubMed]
  15. P. J. Bex, A. B. Metha, W. Makous, “Psychophysical evidence for a functional hierarchy of motion processing mechanisms,” J. Opt. Soc. Am. A 15, 769–776 (1998). [CrossRef]
  16. P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997). [CrossRef]
  17. P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. 39, 2229–2238 (1999). [CrossRef] [PubMed]
  18. H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).
  19. C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991). [PubMed]
  20. G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992). [CrossRef] [PubMed]
  21. K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989). [PubMed]
  22. M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994). [PubMed]
  23. J. Kim, K. Mulligan, H. Sherk, “Simulated optic flow and extrastriate cortex. I: optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997). [PubMed]
  24. K. Mulligan, J. Kim, H. Sherk, “Simulated optic flow and extrastriate cortex. II: responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997). [PubMed]
  25. H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996). [CrossRef]
  26. O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974). [CrossRef] [PubMed]
  27. J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random dot cinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983). [CrossRef]
  28. J. J. Chang, B. Julesz, “Cooperative and non-cooperative processes of apparent movement of random-dot cinematograms,” Spatial Vision 1, 39–45 (1985). [CrossRef] [PubMed]
  29. R. Cleary, O. J. Braddick, “Masking of low frequency information in short-range apparent motion,” Vision Res. 30, 317–327 (1990). [CrossRef] [PubMed]
  30. R. Cleary, O. J. Braddick, “Direction discrimination for band-pass filtered random dot kinematograms,” Vision Res. 30, 303–316 (1990). [CrossRef] [PubMed]
  31. W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990). [CrossRef] [PubMed]
  32. M. J. Morgan, G. Mather, “Motion discrimination in two-frame sequences with differing spatial frequency content,” Vision Res. 34, 197–208 (1994). [CrossRef] [PubMed]
  33. P. J. Bex, N. Brady, R. E. Fredericksen, R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–672 (1995). [CrossRef]
  34. R. A. Eagle, B. J. Rogers, “Motion detection is limited by element density not spatial frequency,” Vision Res. 36, 545–558 (1996). [CrossRef] [PubMed]
  35. N. Brady, P. J. Bex, R. E. Fredericksen, “Independent coding across spatial scales in moving fractal images,” Vision Res. 37, 1873–1883 (1997). [CrossRef] [PubMed]
  36. T. Ledgeway, “How similar must the Fourier spectra of the frames of a random-dot kinematogram be to support motion perception?” Vision Res. 36, 2489–2495 (1996). [CrossRef] [PubMed]
  37. A. B. Watson, “Apparent motion occurs only between similar spatial frequencies,” Vision Res. 26, 1727–1730 (1986). [CrossRef] [PubMed]
  38. R. F. Hess, P. J. Bex, R. F. Fredericksen, N. Brady, “Is human motion detection subserved by a single or multiple channel mechanism?” Vision Res. 38, 259–266 (1998). [CrossRef] [PubMed]
  39. Y. D. Yang, R. Blake, “Broad tuning for spatial-frequency of neural mechanisms underlying visual-perception of coherent motion,” Nature (London) 371, 793–796 (1994). [CrossRef]
  40. R. Over, J. Broerse, B. Crassini, W. Lovegrove, “Spatial determinants of the aftereffect of seen movement,” Vision Res. 13, 1681–1690 (1973). [CrossRef] [PubMed]
  41. E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992). [CrossRef] [PubMed]
  42. P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996). [CrossRef] [PubMed]
  43. I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997). [CrossRef] [PubMed]
  44. H. Ashida, N. Osaka, “Difference of spatial-frequency selectivity between static and flicker motion aftereffects,” Perception 23, 1313–1320 (1994). [CrossRef]
  45. F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996). [CrossRef] [PubMed]
  46. S. Nishida, T. Sato, “Motion aftereffect with flickering test patterns reveals higher stages of motion processing,” Vision Res. 35, 477–490 (1995). [CrossRef] [PubMed]
  47. D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987). [CrossRef] [PubMed]
  48. E. P. Simoncelli, D. J. Heeger, “A model of neuronal responses in visual area MT,” Vision Res. 38, 743–761 (1998). [CrossRef] [PubMed]
  49. O. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993). [CrossRef] [PubMed]
  50. J. J. Koenderink, “Optic flow,” Vision Res. 26, 161–179 (1986). [CrossRef] [PubMed]
  51. J. J. Koenderink, A. J. van Doorn, “How an ambulant observer can construct a model of the environment from the geometrical structure of the visual inflow,” in Kibernetic, G. Hauske, E. Butendant, eds. (Oldenbourg, Munich, 1977).
  52. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997). [CrossRef] [PubMed]
  53. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991). [CrossRef] [PubMed]
  54. W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988). [PubMed]
  55. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983). [CrossRef] [PubMed]
  56. M. Edwards, D. R. Badcock, “Interactions of the ON and OFF pathway,” Vision Res. 34, 2849–2858 (1994). [CrossRef] [PubMed]
  57. R. J. Snowden, R. Edmunds, “Colour and polarity contributions to global motion perception,” Vision Res. 39, 1813–1822 (1999). [CrossRef] [PubMed]
  58. L. J. Croner, T. D. Albright, “Image segmentation enhances discrimination of motion in visual noise,” Vision Res. 37, 1415–1427 (1997). [CrossRef] [PubMed]
  59. P. B. Hibbard, M. F. Bradshaw, B. De Bruyn, “Is global motion tuned for binocular disparity?” Vision Res. 39, 961–974 (1999). [CrossRef] [PubMed]
  60. R. J. Snowden, M. C. Rossiter, “Stereoscopic depth cues can segment motion information,” Perception 28, 193–201 (1999). [CrossRef]
  61. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985). [CrossRef] [PubMed]
  62. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985). [CrossRef] [PubMed]
  63. J. P. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985). [CrossRef] [PubMed]
  64. M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).
  65. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988). [CrossRef] [PubMed]
  66. Z. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995). [CrossRef] [PubMed]
  67. S. Ullman, The Interpretation of Visual Motion (MIT Press, Cambridge, Mass., 1979).
  68. H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992). [CrossRef]
  69. P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993). [CrossRef] [PubMed]
  70. P. Cavanagh, M. Arguin, M. von Grunau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989). [CrossRef] [PubMed]
  71. J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993). [CrossRef] [PubMed]
  72. J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993). [CrossRef] [PubMed]
  73. C. L. J. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998). [CrossRef] [PubMed]
  74. P. J. Bex, C. L. Baker, “Motion perception over long inter-stimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited