Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis

Not Accessible

Your library or personal account may give you access

Abstract

The range of validity of the scalar diffraction analysis is quantified for the case of two-dimensionally-periodic diffractive optical elements (crossed gratings). Three canonical classes of two-dimensionally-periodic grating structures are analyzed by using the rigorous coupled-wave analysis as well as the scalar diffraction analysis. In all cases the scalar-analysis diffraction efficiencies are compared with the exact diffraction efficiencies. The error in using the scalar analysis is then determined as a function of the grating-period(s)-to-wavelength ratio(s), the minimum feature size, the grating depth, the refractive index of the grating, the incident polarization, and the number of phase levels. The three classes of two-dimensional (2-D) unit cells are as follows: (1) a rectangular pillar, (2) an elliptical pillar, and (3) an arbitrarily pixellated multilevel 2-D unit cell that is representative of more complicated diffractive optical elements such as computer-generated holograms. In all cases a normally incident electromagnetic plane wave is considered. It is shown that the error of the scalar diffraction analysis in the case of two-dimensionally-periodic diffractive optical elements is greater than that for the corresponding one-dimensionally-periodic counterparts. In addition, the accuracy of the scalar diffraction analysis degrades with increasing refractive index, grating thickness, and asymmetry of the 2-D unit cell and with decreasing grating-period-to-wavelength ratio and feature size.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Limits of scalar diffraction theory for diffractive phase elements

Drew A. Pommet, M. G. Moharam, and Eric B. Grann
J. Opt. Soc. Am. A 11(6) 1827-1834 (1994)

Three-dimensional converging–diverging Gaussian beam diffraction by a volume grating

Shun-Der Wu, Thomas K. Gaylord, Elias N. Glytsis, and Yu-Ming Wu
J. Opt. Soc. Am. A 22(7) 1293-1303 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved