OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 702–715

Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis

Elias N. Glytsis  »View Author Affiliations


JOSA A, Vol. 19, Issue 4, pp. 702-715 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000702


View Full Text Article

Enhanced HTML    Acrobat PDF (707 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The range of validity of the scalar diffraction analysis is quantified for the case of two-dimensionally-periodic diffractive optical elements (crossed gratings). Three canonical classes of two-dimensionally-periodic grating structures are analyzed by using the rigorous coupled-wave analysis as well as the scalar diffraction analysis. In all cases the scalar-analysis diffraction efficiencies are compared with the exact diffraction efficiencies. The error in using the scalar analysis is then determined as a function of the grating-period(s)-to-wavelength ratio(s), the minimum feature size, the grating depth, the refractive index of the grating, the incident polarization, and the number of phase levels. The three classes of two-dimensional (2-D) unit cells are as follows: (1) a rectangular pillar, (2) an elliptical pillar, and (3) an arbitrarily pixellated multilevel 2-D unit cell that is representative of more complicated diffractive optical elements such as computer-generated holograms. In all cases a normally incident electromagnetic plane wave is considered. It is shown that the error of the scalar diffraction analysis in the case of two-dimensionally-periodic diffractive optical elements is greater than that for the corresponding one-dimensionally-periodic counterparts. In addition, the accuracy of the scalar diffraction analysis degrades with increasing refractive index, grating thickness, and asymmetry of the 2-D unit cell and with decreasing grating-period-to-wavelength ratio and feature size.

© 2002 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1380) Diffraction and gratings : Binary optics
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.1970) Diffraction and gratings : Diffractive optics
(260.2110) Physical optics : Electromagnetic optics

History
Original Manuscript: April 25, 2001
Revised Manuscript: July 25, 2001
Manuscript Accepted: September 13, 2001
Published: April 1, 2002

Citation
Elias N. Glytsis, "Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis," J. Opt. Soc. Am. A 19, 702-715 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-4-702


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Leger, M. G. Moharam, T. K. Gaylord, feature eds., feature issue on diffractive optics applications, Appl. Opt. 34, 2399–2559 (1995). [CrossRef] [PubMed]
  2. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, San Francisco, 1996), Chaps. 3 and 4.
  3. D. A. Gremaux, N. C. Gallagher, “Limits of scalar diffraction theory for conducting gratings,” Appl. Opt. 32, 1948–1953 (1993). [CrossRef] [PubMed]
  4. Y.-L. Kok, N. C. Gallagher, “Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-groove grating,” J. Opt. Soc. Am. A 5, 65–73 (1988). [CrossRef] [PubMed]
  5. D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994). [CrossRef]
  6. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  7. T. O. Körner, J. T. Sheridan, J. Schwider, “Interferometric resolution examined by means of electromagnetic theory,” J. Opt. Soc. Am. A 12, 752–760 (1995). [CrossRef]
  8. S. E. Sandström, G. Tayeb, R. Petit, “Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution,” J. Electromagn. Waves Appl. 7, 631–649 (1993). [CrossRef]
  9. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998). [CrossRef]
  10. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996). [CrossRef]
  11. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16, 113–130 (1999). [CrossRef]
  12. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector modeling diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39 (1995). [CrossRef]
  13. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  14. D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999). [CrossRef]
  15. D. W. Prather, S. Shi, “Electromagnetic analysis of axially symmetric diffractive lenses with the method of moments,” J. Opt. Soc. Am. A 17, 729–739 (2000). [CrossRef]
  16. J. N. Mait, “Design of binary-phase and multiphase Fourier gratings for array generation,” J. Opt. Soc. Am. A 7, 1514–1528 (1990). [CrossRef]
  17. A. Vasara, M. R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt. 31, 3320–3336 (1992). [CrossRef] [PubMed]
  18. J. R. Leger, G. J. Swanson, W. B. Veldkamp, “Coherent laser addition using binary phase gratings,” Appl. Opt. 26, 4391–4399 (1987). [CrossRef] [PubMed]
  19. S. J. Walker, J. Jahns, “Array generation with multilevel phase gratings,” J. Opt. Soc. Am. A 7, 1509–1513 (1990). [CrossRef]
  20. D. Prongué, H. P. Herzig, R. Dändliker, M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992). [CrossRef] [PubMed]
  21. M. T. Gale, M. Rossi, H. Schütz, P. Ehbets, H. P. Herzig, D. Prongué, “Continuous-relief diffractive optical elements for two-dimensional array generation,” Appl. Opt. 32, 2526–2533 (1993). [CrossRef] [PubMed]
  22. J. Bengtsson, “Design of fan-out kinoforms in the entire scalar diffraction regime with an optimal-rotation-angle method,” Appl. Opt. 36, 8435–8444 (1997). [CrossRef]
  23. M. G. Moharam, “Coupled-wave analysis of two-dimensional dielectric gratings,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. SPIE883, 8–11 (1988). [CrossRef]
  24. S. T. Han, Y.-L. Tsao, R. M. Wasler, M. F. Becker, “Electromagnetic scattering of two-dimensional surface-relief dielectric gratings,” Appl. Opt. 31, 2343–2352 (1992). [CrossRef] [PubMed]
  25. S. Peng, G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,” J. Opt. Soc. Am. A 12, 1087–1096 (1995). [CrossRef]
  26. J. B. Harris, T. W. Preist, J. R. Sambles, R. N. Thorpe, R. A. Watts, “Optical response of bigratings,” J. Opt. Soc. Am. A 13, 2041–2049 (1996). [CrossRef]
  27. E. Noponen, J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11, 2494–2502 (1994). [CrossRef]
  28. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  29. D. Maystre, M. Nevière, “Electromagnetic theory of crossed gratings,” J. Opt. (Paris) 9, 301–306 (1978). [CrossRef]
  30. V. Bagnoud, S. Mainguy, “Diffraction of electromagnetic waves by dielectric crossed gratings: a three-dimensional Rayleigh–Fourier solution,” J. Opt. Soc. Am. A 16, 1277–1285 (1999). [CrossRef]
  31. M. Bagieu, D. Maystre, “Regularized Waterman and Rayleigh methods: extension to two-dimensional gratings,” J. Opt. Soc. Am. A 16, 284–292 (1999). [CrossRef]
  32. P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited