OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 716–726

Plane-wave–time-domain-enhanced marching-on-in-time scheme for analyzing scattering from homogeneous dielectric structures

Balasubramaniam Shanker, Arif A. Ergin, and Eric Michielssen  »View Author Affiliations


JOSA A, Vol. 19, Issue 4, pp. 716-726 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000716


View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel and fast integral-equation-based scheme is presented for analyzing transient electromagnetic scattering from homogeneous, isotropic, and nondispersive bodies. The computational complexity of classical marching-on-in-time (MOT) methods for solving time-domain integral equations governing electromagnetic scattering phenomena involving homogeneous penetrable bodies scales as O(NtNs2). Here, Nt represents the number of time steps in the analysis, and Ns denotes the number of spatial degrees of freedom of the discretized electric and magnetic currents on the body’s surface. In contrast, the computational complexity of the proposed plane-wave–time-domain-enhanced MOT solver scales as O(NtNs log2 Ns). Numerical results that demonstrate the accuracy and the efficacy of the scheme are presented.

© 2002 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.3870) General : Mathematics
(000.4430) General : Numerical approximation and analysis
(350.6980) Other areas of optics : Transforms
(350.7420) Other areas of optics : Waves

History
Original Manuscript: January 22, 2001
Manuscript Accepted: September 20, 2001
Published: April 1, 2002

Citation
Balasubramaniam Shanker, Arif A. Ergin, and Eric Michielssen, "Plane-wave–time-domain-enhanced marching-on-in-time scheme for analyzing scattering from homogeneous dielectric structures," J. Opt. Soc. Am. A 19, 716-726 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-4-716


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Shlivinski, E. Heyman, R. Kastner, “Antenna characterization in the time domain,” IEEE Trans. Antennas Propag. 45, 1140–1149 (1997). [CrossRef]
  2. W. R. Stone, Radar Cross Sections of Complex Objects (Institute of Electrical and Electronics Engineers, New York, 1990).
  3. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  4. A. A. Ergin, B. Shanker, E. Michielssen, “The plane wave time domain algorithm for the fast analysis of transient wave phenomena,” IEEE Antennas Propag. Mag. 41, 39–52 (1999). [CrossRef]
  5. A. A. Ergin, B. Shanker, E. Michielssen, “Fast evaluation of three-dimensional transient wave fields using diagonal translation operators,” J. Comput. Phys. 146, 157–180 (1998). [CrossRef]
  6. R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993). [CrossRef]
  7. B. Shanker, A. A. Ergin, E. Michielssen, “The multilevel plane wave time domain algorithm for the fast analysis of transient scattering phenomena,” in Proceedings of the IEEE International Symposium on Antennas and Propagation (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 2, pp. 1342–1345.
  8. B. Shanker, A. A. Ergin, K. Aygun, E. Michielssen, “Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time domain algorithm,” IEEE Trans. Antennas Propag. 48, 510–523 (2000). [CrossRef]
  9. A. A. Ergin, B. Shanker, E. Michielssen, “Fast transient analysis of acoustic wave scattering from rigid bodies using two-level plane wave time domain algorithm,” J. Acoust. Soc. Am. 106, 2405–2416 (1999). [CrossRef]
  10. A. A. Ergin, B. Shanker, E. Michielssen, “Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm,” J. Acoust. Soc. Am. 107, 1168–1178 (2000). [CrossRef] [PubMed]
  11. S. M. Rao, D. R. Wilton, “Transient scattering by conducting surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 39, 56–61 (1991). [CrossRef]
  12. S. M. Rao, T. K. Sarkar, “An efficient method to evaluate the time-domain scattering from arbitrarily shaped conducting bodies,” Microwave Opt. Technol. Lett. 17, 321–325 (1998). [CrossRef]
  13. H. Mieras, C. L. Bennet, “Space–time integral equation approach to dielectric targets,” IEEE Trans. Antennas Propag. AP-30, 2–9 (1982). [CrossRef]
  14. C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer-Verlag, Berlin, 1969).
  15. E. Schlemmer, W. M. Rucker, K. R. Richter, “Boundary element computations of 3D scattering from lossy dielectric objects,” IEEE Trans. Magn. 29, 1524–1527 (1993). [CrossRef]
  16. B. P. Rynne, “Time domain scattering from dielectric bodies,” Electromagnetics 14, 181–193 (1994). [CrossRef]
  17. D. A. Vechinski, S. M. Rao, T. K. Sarkar, “Transient scattering from three dimensional arbitrarily shaped dielectric bodies,” J. Opt. Soc. Am. A 11, 1458–1470 (1994). [CrossRef]
  18. M. D. Pocock, M. J. Bluck, S. P. Walker, “Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations,” IEEE Trans. Antennas Propag. 46, 1212–1219 (1998). [CrossRef]
  19. R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3, 1–15 (1989). [CrossRef]
  20. S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. AP-30, 408–418 (1982).
  21. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS, New York, 1996).
  22. R. W. Freund, “A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Comput. 14, 470–482 (1993). [CrossRef]
  23. M. Tygel, P. Hubral, Transient Waves in Layered Media (Elsevier, Amsterdam, 1987), Vol. 26.
  24. O. M. Bucci, G. Franceschetti, “On the spatial bandwidth of scattered fields,” IEEE Trans. Antennas Propag. AP-35, 1445–1455 (1987). [CrossRef]
  25. O. M. Bucci, C. Gennarelli, C. Savarese, “Optimal interpolation of radiated fields over a sphere,” IEEE Trans. Antennas Propag. 39, 1633–1643 (1991). [CrossRef]
  26. J. J. Knab, “Interpolation of band-limited functions using the approximate prolate series,” IEEE Trans. Inf. Theory IT-25, 717–720 (1979). [CrossRef]
  27. R. Jakob-Chien, B. K. Alpert, “A fast spherical filter with uniform resolution,” J. Comput. Phys. 136, 580–584 (1997). [CrossRef]
  28. A. C. Woo, H. T. G. Wang, M. J. Schuh, M. L. Sanders, “Benchmark radar targets for the validation of computational electromagnetics programs,” IEEE Antennas Propag. Mag. 35, 84–89 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited