OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 745–752

Tip/tilt estimation from defocused images

Marcos A. van Dam and Richard G. Lane  »View Author Affiliations

JOSA A, Vol. 19, Issue 4, pp. 745-752 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In astronomical imaging, the errors in the wave-front slope are a significant cause of aberrations in the detected image. We investigate how the slope can be estimated optimally using an intensity measurement of the propagated wave front. We show that the optimal location for detection of wave-front tilt is the focal plane, and we quantify the error in using defocused images, such as would be obtained from a curvature sensor, for estimating the wave-front tilt. The effect of using broadband light is also quantified.

© 2002 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

Original Manuscript: February 7, 2001
Revised Manuscript: July 26, 2001
Manuscript Accepted: September 19, 2001
Published: April 1, 2002

Marcos A. van Dam and Richard G. Lane, "Tip/tilt estimation from defocused images," J. Opt. Soc. Am. A 19, 745-752 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  2. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am. 72, 1199–1209 (1982). [CrossRef]
  3. M. A. van Dam, R. G. Lane, “Wave-front slope estimation,” J. Opt. Soc. Am. A 17, 1319–1324 (2000). [CrossRef]
  4. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), pp. 57–100.
  5. C. Roddier, F. Roddier, “Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277–2287 (1993). [CrossRef]
  6. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  7. C. S. Williams, O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, New York, 1989), pp. 291–299.
  8. F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), pp. 283–376.
  9. B. L. Ellerbroek, D. W. Tyler, “Modelling the combined effect of static and varying phase distortions on the performance of adaptive optical systems,” Appl. Opt. 38, 3857–3868 (1999). [CrossRef]
  10. H. L. Van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968), pp. 66–85, Part 1.
  11. H. Cramér, Mathematical Methods of Statistics (Princeton U. Press, Princeton, N. J., 1946), pp. 498–505.
  12. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef] [PubMed]
  13. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  14. G. Rousset, “Wave-front sensors,” in Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge U. Press, Cambridge, UK, 1999), pp. 91–130.
  15. F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29, 1402–1403 (1990). [CrossRef] [PubMed]
  16. I. Han, “New method for estimating wavefront from curvature signal by curve fitting,” Opt. Eng. 34, 1232–1237 (1995). [CrossRef]
  17. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1999), p. 491.
  18. C. M. Harding, R. A. Johnston, R. G. Lane, “Fast simulation of a Kolmogorov phase screen,” Appl. Opt. 38, 2161–2170 (1999). [CrossRef]
  19. J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optimiz. 9, 112–147 (1998). [CrossRef]
  20. S. Rios, E. Acosta, S. Bara, “Modal phase estimation from wavefront curvature sensing,” Opt. Commun. 123, 453–456 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited