OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 759–771

Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths

Jangwoen Lee and Eva M. Sevick-Muraca  »View Author Affiliations

JOSA A, Vol. 19, Issue 4, pp. 759-771 (2002)

View Full Text Article

Acrobat PDF (646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ultimate success of near-infrared optical tomography rests on the precise measurement of light propagation within tissues or random media, the accurate prediction of these measurements from a light propagation model, and an efficient three-dimensional solution of the inverse imaging problem. To date, optical tomography algorithms have focused on frequency-domain photon migration (FDPM) measurements of phase-delay and amplitude attenuation, which are reported <i>relative</i> to the incident light, even though phase-delay and amplitude of incident light are nearly impossible to measure directly. In this contribution, we examine <i>referenced</i>, fluorescence-enhanced frequency-domain photon migration measured at excitation and/or emission wavelengths and report on a measurement strategy to minimize measurement and calibration error for efficient coupling of data to a distorted Born iterative imaging algorithm. We examine three referencing approaches and develop associated inversion algorithms for (1) normalizing detected emission FDPM data to the predicted emission wave arising from a homogeneous medium, (2) referencing detected emission FDPM data to that detected at a reference point, and (3) referencing detected emission FDPM data to detected excitation FDPM data detected at a reference point. Our results show the latter approach to be practical while reducing the nonlinearity of the inverse problem. Finally, in light of our results, we demonstrate the method for eliminating the influence of source strength and instrument functions for effective fluorescence-enhanced optical tomography using FDPM.

© 2002 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5270) Medical optics and biotechnology : Photon density waves
(170.6960) Medical optics and biotechnology : Tomography

Jangwoen Lee and Eva M. Sevick-Muraca, "Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths," J. Opt. Soc. Am. A 19, 759-771 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
  2. T. McBride, B. Pogue, E. Gerety, S. Poplack, U. Osterberg, and K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
  3. J. Fishikin, O. Coquoz, E. Anderson, M. Brenner, and B. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
  4. S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, and T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
  5. M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. Mantulin, M. Seeber, and P. Schlag, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
  6. K. Moesta, S. Fantini, H. Hess, M. Franceschini, M. Kaschke, and M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, 129–136 (1998).
  7. D. Grosenick, H. Wabnitz, H. Rinnenberg, K. Moesta, and P. Schlag, “Development of a time-domain optical mammography and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
  8. S. B. Colak, M. B. van der Mark, G. W. Hooft, H. J. H., E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
  9. D. J. Hawrysz and Eva M. Sevick-Muraca, “Development towards diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2 (5), 382–417 (2000).
  10. E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, and C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).
  11. X. Li, B. Chance, and A. G. Yodh, “Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6844 (1998).
  12. A. Becker, G. Schneider, B. Riefke, K. Licha, and W. Semmler, “Localization of near-infrared contrast agents in tumor by intravital microscopy,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, and P. M. Viallet, eds., Proc. SPIE 3568, 112–118 (1999).
  13. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 4, 375–378 (1999).
  14. K. Licha and A. Becker, “New contrast agent for optical imaging: acid cleavable conjugates of cyannine dyes with biomolecules,” in Biomedical Imaging: Reporters, Dyes, and Instrumentation, D. J. Bornhop and C. H. Contag, eds., Proc. SPIE 3600, 29–35 (1999).
  15. E. M. Sevick-Muraca and D. Y. Paithankar, “Fluorescence imaging system and measurement,” U.S. patent 5,865,754, February 2, 1999.
  16. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and quantum efficiency form multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
  17. V. Chernomordik, V. D. Hattery, L. Gannot, and A. H. Amir, “Inverse method 3-D reconstruction of localized in vivo fluorescence—application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 54, 930–935 (1999).
  18. J. Chang, H. Graber, and R. Barbour, “Improved reconstruction algorithm for luminescence optical tomography when background lumiphore is present,” Appl. Opt. 37, 3547–3552 (1998).
  19. D. Hattery, V. Chernomorik, I. Gannot, M. Loew, and A. H. Gandjbakhche, “Fluorescence measurement of localized, deeply embedded physiological processes,” in Medical Imaging 2000: Physiology and Function from Multidimensional Images, C.-T. Chen and A. V. Clough, eds., Proc. SPIE 3978, 377–382 (2000).
  20. J. Chang, H. Graber, and R. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997).
  21. M. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
  22. M. J. Eppstein, D. E. Dougerty, T. L. Troy, and E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
  23. R. Mayer, J. Reynolds, and E. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
  24. A. J. Welch and M. J. C. van Germert, Optical–Thermal Response of Laser-Irradiated Tissue (Plenum, Welch Press, New York, 1995).
  25. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  26. E. Kuwana and E. M. Sevick-Muraca, “Generation and propagation of fluorescence light from fluorophores exhibiting multiexponential decay kinetics in multiply scattering media,” in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 183–194 (2001).
  27. R. Haskell, L. Svaasand, T. Tshay, T. Feng, M. McAdams, and B. Tromberg, “Boundary conditions for the diffusionequation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
  28. A. Hielschert, S. Jacques, L. Wang, and F. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
  29. B. Pogue, T. McBride, J. Prewitt, U. Osterberg, and K. Paulsen, “Spatially varying regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
  30. M. J. Holboke and A. G. Yodh, “Parallel three-dimensional diffuse optical tomography,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 177–179.
  31. M. Xu, M. Lax, and R. R. Alfano, “Time-resolved Fourier diffuse optical tomography,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2000), pp. 345–347.
  32. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, and D. T. Delpy, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).
  33. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “3-D Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).
  34. J. Lee and E. Sevick-Muraca, “Fluorescence-enhanced absorption imaging using frequency-domain photon migration: tolerance to measurement error,” J. Biomed. Opt. 6 (1), 58–67 (2001).
  35. D. J. Hawrysz, M. J. Eppstein, and E. M. Sevick-Muraca, “Measurement and model error assessment of a single pixel, frequency domain apparatus and diffusion model for imaging applications,” in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Anderson-Engels and J. G. Fujimoto, eds., Proc. SPIE 4160, 153–162 (2000).
  36. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
  37. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterbeg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometric analysis for finite-element image and reconstruction,” Appl. Opt. 40, 588–600 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited