OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 4 — Apr. 1, 2002
  • pp: 759–771

Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths

Jangwoen Lee and Eva M. Sevick-Muraca  »View Author Affiliations


JOSA A, Vol. 19, Issue 4, pp. 759-771 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000759


View Full Text Article

Enhanced HTML    Acrobat PDF (646 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ultimate success of near-infrared optical tomography rests on the precise measurement of light propagation within tissues or random media, the accurate prediction of these measurements from a light propagation model, and an efficient three-dimensional solution of the inverse imaging problem. To date, optical tomography algorithms have focused on frequency-domain photon migration (FDPM) measurements of phase-delay and amplitude attenuation, which are reported relative to the incident light, even though phase-delay and amplitude of incident light are nearly impossible to measure directly. In this contribution, we examine referenced, fluorescence-enhanced frequency-domain photon migration measured at excitation and/or emission wavelengths and report on a measurement strategy to minimize measurement and calibration error for efficient coupling of data to a distorted Born iterative imaging algorithm. We examine three referencing approaches and develop associated inversion algorithms for (1) normalizing detected emission FDPM data to the predicted emission wave arising from a homogeneous medium, (2) referencing detected emission FDPM data to that detected at a reference point, and (3) referencing detected emission FDPM data to detected excitation FDPM data detected at a reference point. Our results show the latter approach to be practical while reducing the nonlinearity of the inverse problem. Finally, in light of our results, we demonstrate the method for eliminating the influence of source strength and instrument functions for effective fluorescence-enhanced optical tomography using FDPM.

© 2002 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5270) Medical optics and biotechnology : Photon density waves
(170.6960) Medical optics and biotechnology : Tomography

History
Original Manuscript: April 9, 2001
Revised Manuscript: November 12, 2001
Manuscript Accepted: November 12, 2001
Published: April 1, 2002

Citation
Jangwoen Lee and Eva M. Sevick-Muraca, "Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths," J. Opt. Soc. Am. A 19, 759-771 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-4-759

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited