OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 5 — May. 1, 2002
  • pp: 858–870

Assessment of an extended Nijboer–Zernike approach for the computation of optical point-spread functions

Joseph Braat, Peter Dirksen, and Augustus J. E. M. Janssen  »View Author Affiliations


JOSA A, Vol. 19, Issue 5, pp. 858-870 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000858


View Full Text Article

Acrobat PDF (274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We assess the validity of an extended Nijboer–Zernike approach [J. Opt. Soc. Am. A 19, 849 (2002)], based on recently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems. These new series representations yield a flexible means to compute optical point-spread functions, both accurately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the accuracy, as opposed to the more commonly used numerical packages based on strictly numerical integration methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike objects but can also be used for extended objects under various illumination conditions. The calculation schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude terms that contribute to the final image intensity function.

© 2002 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(050.1960) Diffraction and gratings : Diffraction theory
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(110.2990) Imaging systems : Image formation theory
(110.3960) Imaging systems : Microlithography

Citation
Joseph Braat, Peter Dirksen, and Augustus J. E. M. Janssen, "Assessment of an extended Nijboer–Zernike approach for the computation of optical point-spread functions," J. Opt. Soc. Am. A 19, 858-870 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-5-858

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited