OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 5 — May. 1, 2002
  • pp: 871–880

Rigorous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode

Danaë Delbeke, Peter Bienstman, Ronny Bockstaele, and Roel Baets  »View Author Affiliations


JOSA A, Vol. 19, Issue 5, pp. 871-880 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000871


View Full Text Article

Enhanced HTML    Acrobat PDF (825 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the grating-assisted light-emitting diode, an LED design for high brightness based on a resonant cavity containing one- or two-dimensionally periodically corrugated layers (grating). We give in detail a generally applicable electromagnetic analysis based on the rigorous coupled-wave theory to calculate the extraction efficiency of spontaneous emission in a periodically corrugated layer structure. This general model is then specified on the grating-assisted resonant-cavity LED, showing simulated efficiencies of more than 40%.

© 2002 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2230) Diffraction and gratings : Fabry-Perot
(230.3670) Optical devices : Light-emitting diodes

History
Original Manuscript: July 2, 2001
Revised Manuscript: October 11, 2001
Manuscript Accepted: October 18, 2001
Published: May 1, 2002

Citation
Danaë Delbeke, Peter Bienstman, Ronny Bockstaele, and Roel Baets, "Rigorous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode," J. Opt. Soc. Am. A 19, 871-880 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-5-871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Gillessen, W. Schairer, Light Emitting Diodes: an Introduction, (Prentice-Hall International, Cambridge, UK, 1987).
  2. W. Schmid, F. Eberhard, R. Jäger, R. King, M. Miller, J. Joos, K. J. Ebeling, “45% quantum efficiency light-emitting diodes with radial outcoupling taper,” in Light-Emitting Diodes: Research, Manufacturing, and Applications IV, H. W. Yao, I. T. Ferguson, E. F. Schubert, eds., Proc. SPIE3938, 90–97 (2000).
  3. M. O. Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, G. M. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, M. Hueschen, “High power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 9365–9367 (1993).
  4. I. Schnitzer, E. Yablonovitch, C. Carneau, T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993). [CrossRef]
  5. R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Doehler, B. Dutta, M. Kuijk, G. Borghs, P. Heremans, “Impact of texture-enhanced transmission on high-effiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2317 (2001). [CrossRef]
  6. H. Benisty, H. De Neve, C. Weisbuch, “Impact of planar microcavity effects on light extraction—part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998). [CrossRef]
  7. H. Benisty, H. De Neve, C. Weisbuch, “Impact of planar microcavity effects on light extraction—part II: selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998). [CrossRef]
  8. J. J. Wierer, D. A. Kellogg, N. Holonyak, “Tunnel contact junction native-oxide aperture and mirror vertical-cavity surface-emitting lasers and resonant-cavity light-emitting diodes,” Appl. Phys. Lett. 74, 926–928 (1999). [CrossRef]
  9. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett. 62, 131–133 (1993). [CrossRef]
  10. M. G. Salt, P. Andrew, W. L. Barnes, “Microcavities, texture symmetry, and photonic bandgaps,” J. Opt. Soc. Am. B 18, 240–243 (2001). [CrossRef]
  11. S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photonic bandgaps in metallic microcavities,” J. Appl. Phys. 84, 2399–2403 (1998). [CrossRef]
  12. M. G. Salt, W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61, 11125–11135 (2000). [CrossRef]
  13. H. Rigneault, F. Lemarchand, A. Sentenac, H. Giovannini, “Extraction of light from source located inside waveguide grating structures,” Opt. Lett. 24, 148–150 (1999). [CrossRef]
  14. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77, 3340–3342 (2000). [CrossRef]
  15. D. Delbeke, B. Dhoedt, R. Bockstaele, I. Moerman, P. Van Daele, T. F. Krauss, R. Baets, “Electrically pumped photonic crystal micro-cavity light emitting diodes,” in Proceedings of IEEE/LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 71–72.
  16. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, L. A. Kolodziejsk, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001). [CrossRef]
  17. M. Rattier, H. Benisty, C. Weisbuch, “Photonic crystal extractor,” in Electromagnetic Crystal Structures: Proceedings of Workshop on Photonic and Electromagnetic Crystal Structures III (PECS3) (T. F. Krauss, University of St. Andrews, St. Andrews, UK, 2001).
  18. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystal,” Appl. Phys. Lett. 75, 1036–1038 (1999). [CrossRef]
  19. H. Rigneault, F. Lemarchand, A. Sentenac, “Dipole radiation into grating structures,” J. Opt. Soc. Am. A 17, 1048–1058 (2000). [CrossRef]
  20. H. De Neve, “Design and fabrication of light emitting diodes based on the microcavity effect,” Ph. D. dissertation (Ghent University, Ghent, Belgium), p. 110 (1997).
  21. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  22. S. Zhang, T. Tamir, “Rigorous theory of grating assisted couplers,” J. Opt. Soc. Am. A 13, 2403–2413 (1996). [CrossRef]
  23. N. H. Sun, J. K. Butler, G. A. Evans, L. Pang, P. Congdon, “Analysis of grating-assisted directional couplers using the Floquet–Bloch theory,” Appl. Phys. Lett. 13, 2301–2315 (1997).
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation of stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  26. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  27. P. Lalanne, “Effective properties and band structures of lamellar subwavelength crystals: plane-wave method revisited,” Phys. Rev. B 58, 9801–9807 (1998). [CrossRef]
  28. D. Delbeke, K. Vandeputte, R. Baets, R. Bockstaele, B. Dhoedt, I. Moerman, P. Van Daele, S. Verstuyft, “Holographically defined grating assisted micro-cavity light emitting diodes,” in Proceedings of the IEEE/LEOS Benelux Symposium (Faculté Politechnique de Mons, Mons, Belgium, 1999), pp. 159–162.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited