OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 5 — May. 1, 2002
  • pp: 902–911

Light scattering from self-affine fractal silver surfaces with nanoscale cutoff: far-field and near-field calculations

José A. Sánchez-Gil, José V. García-Ramos, and Eugenio R. Méndez  »View Author Affiliations


JOSA A, Vol. 19, Issue 5, pp. 902-911 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000902


View Full Text Article

Acrobat PDF (532 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the light scattered from randomly rough, one-dimensional, self-affine fractal silver surfaces with nanoscale lower cutoff illuminated by <i>s</i>- or <i>p</i>-polarized Gaussian beams a few micrometers wide. By means of rigorous numerical calculations based on the Green’s theorem integral equation formulation (GTIEF), we obtain both the far- and near-field scattered intensities. The influence of diminishing the size of the fractal lower-scale irregularities (from ~50 nm to a few nanometers) is analyzed in the case of both single realization and ensemble-average magnitudes. For <i>s</i> polarization, variations are small in the far field, being significant only in the higher-spatial-frequency components of evanescent character in the near field. In the case of <i>p</i> polarization, however, the nanoscale cutoff has remarkable effects stemming from the roughness-induced excitation of surface-plasmon polaritons. In the far field, the effect is noticed both in the speckle pattern variation and in the decrease of the total reflected energy upon ensemble averaging, as a result of increased absorption. In the near field, more efficient excitation of localized optical modes is achieved with smaller cutoff, which in turn leads to huge surface electric field enhancements.

© 2002 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons
(290.4210) Scattering : Multiple scattering
(290.5880) Scattering : Scattering, rough surfaces

Citation
José A. Sánchez-Gil, José V. García-Ramos, and Eugenio R. Méndez, "Light scattering from self-affine fractal silver surfaces with nanoscale cutoff: far-field and near-field calculations," J. Opt. Soc. Am. A 19, 902-911 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-5-902


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. B. Mandelbrot, Fractals (Freeman, San Francisco, Calif., 1977).
  2. J. Feder, Fractals (Plenum, New York, 1988).
  3. A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge U. Press, Cambridge, UK, 1995).
  4. M. V. Berry, “Difractals,” J. Appl. Phys. 12, 781–797 (1979).
  5. E. Jakeman, “Fraunhofer scattering by a sub-fractal diffuser,” Opt. Acta 30, 1207–1212 (1983).
  6. D. L. Jaggard and Y. Kim, “Diffraction by band-limited fractal screens,” J. Opt. Soc. Am. A 4, 1055–1062 (1987).
  7. R. Jullien and R. Botet, “Geometrical optics in fractals,” Physica D 38, 208–212 (1989).
  8. S. K. Sinha, “Scattering from fractal structures,” Physica D 38, 310–314 (1989).
  9. B. J. West, “Sensing scaled scintillations,” J. Opt. Soc. Am. A 7, 1074–1100 (1990).
  10. D. L. Jaggard and X. Sun, “Scattering from fractally corrugated surfaces,” J. Opt. Soc. Am. A 7, 1131–1139 (1990).
  11. H. N. Yang, T. M. Lu, and G. C. Wang, “Diffraction from surface growth fronts,” Phys. Rev. B 47, 3911–3922 (1993).
  12. P. E. McSharry, P. J. Cullen, and D. Moroney, “Wave scattering by a two-dimensional band limited fractal surface based on a perturbation of the Green’s function,” J. Appl. Phys. 78, 6940–6948 (1995).
  13. N. Lin, H. P. Lee, S. P. Lim, and K. S. Lee, “Wave scattering from fractal surfaces,” J. Mod. Opt. 42, 225–241 (1995).
  14. S. Savaidis, P. Frangos, D. L. Jaggard, and K. Hizanidis, “Scattering from fractally corrugated surfaces: an exact approach,” Opt. Lett. 20, 2357–2359 (1995).
  15. S. Savaidis, P. Frangos, D. L. Jaggard, and K. Hizanidis, “Scattering from fractally corrugated surfaces with use of the extended boundary condition method,” J. Opt. Soc. Am. A 14, 475–485 (1997).
  16. J. Chen, T. K. Y. Lo, H. Leung, and J. Litva, “The use of fractals for modeling EM wave scattering from rough sea surface,” IEEE Trans. Geosci. Remote Sens. 34, 966–972 (1996).
  17. C. J. R. Sheppard, “Scattering by fractal surfaces with an outer scale,” Opt. Commun. 122, 178–188 (1996).
  18. A. Mendoza-Suárez and E. R. Méndez, “Light scattering by a reentrant fractal surface,” Appl. Opt. 36, 3521–3531 (1997).
  19. J. A. Sánchez-Gil and J. V. García-Ramos, “Far-field intensity of electromagnetic waves scattered from random, self-affine fractal metal surfaces,” Waves Random Media 7, 285–293 (1997).
  20. I. Simonsen, A. Hansen, and O. M. Nes, “Determination of Hurst exponents by use of the wavelet transform,” Phys. Rev. E 58, 2779–2787 (1998).
  21. Y. P. Zhao, G. C. Wang, and T. M. Lu, “Diffraction from non-Gaussian rough surfaces,” Phys. Rev. B 55, 13938–13952 (1997).
  22. G. Franceschetti, A. Iodice, and D. Riccio, “Scattering from dielectric random fractal surfaces via method of moments,” IEEE Trans. Geosci. Remote Sens. 38, 1644–1655 (2000).
  23. I. Simonsen, D. Vandembroucq, and S. Roux, “Wave scatter-ing from self-affine surfaces,” Phys. Rev. E 61, 5914–5917 (2000).
  24. I. Simonsen, D. Vandembroucq, and S. Roux, “Electromagnetic wave scattering from conducting self-affine surfaces: an analytic and numerical study,” J. Opt. Soc. Am. A 18, 1101–1111 (2001).
  25. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (New York) 203, 255–307 (1990).
  26. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).
  27. J. A. Sánchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
  28. J. A. Sánchez-Gil and M. Nieto-Vesparinas, “Resonance effects in multiple light scattering from statistically rough metallic surfaces,” Phys. Rev. B 45, 8623–8633 (1992).
  29. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61–137 (1996).
  30. E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet, “Enhanced Raman scattering from self-affine thin films,” Opt. Lett. 21, 1628–1630 (1996).
  31. J. A. Sánchez-Gil and J. V. García-Ramos, “Strong surface field enhancements in the scattering of p-polarized light from fractal metal surfaces,” Opt. Commun. 134, 11–15 (1997).
  32. J. A. Sánchez-Gil and J. V. García-Ramos, “Calculations of the direct electromagnetic enhancement in surface enhanced Raman scattering on random self-affine fractal metal surfaces,” J. Chem. Phys. 108, 317–325 (1998).
  33. E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901–14913 (1998).
  34. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmaret, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
  35. J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, “Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: spectral dependence of local field enhancements and their statistics in connection with surface-enhanced Raman scattering,” Phys. Rev. B 62, 10515–10525 (2000).
  36. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
  37. S. Bozhevolnyi, B. Vohnsen, I. I. Smolyaninov, and A. V. Zayats, “Direct observation of surface polariton localization caused by surface roughness,” Opt. Commun. 117, 417–423 (1995).
  38. S. Bozhevolnyi, B. Vohnsen, A. V. Zayats, and I. I. Smolyaninov, “Fractal surface characterization: implications for plasmon polariton scattering,” Surf. Sci. 356, 268–274 (1996).
  39. P. Zhang, T. L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in self-affine fractal interfaces observed by near-field microscopy,” Phys. Rev. B 57, 15513–15518 (1998).
  40. S. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
  41. V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
  42. K. A. O’Donnell, R. Torre, and C. S. West, “Observations of backscattering effects in second-harmonic generation from a weakly rough metal surface,” Opt. Lett. 21, 1738–1740 (1996).
  43. M. Leyva-Lucero, E. R. Méndez, T. A. Leskova, A. A. Maradudin, and J. Q. Lu, “Multiple-scattering effects in the second-harmonic generation of light in reflection from a randomly rough metal surface,” Opt. Lett. 21, 1809–1811 (1996).
  44. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
  45. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
  46. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface-enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
  47. R. F. Voss, in The Science of Fractal Images, H.-O. Peitgen and D. Saupe, eds. (Springer, Berlin, 1988).
  48. R. F. Voss, “Random fractals: self-affinity in noise, mountains, and clouds,” Physica D 38, 362–371 (1989).
  49. D. W. Lynch and W. R. Hunter in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, New York, 1985), p. 356.
  50. R. Carminati and J. J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12, 2716–2725 (1995).
  51. J. J. Greffet, A. Sentenac, and R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
  52. J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, “Influence of nanoscale cutoff in random self-affine fractal silver surfaces on the excitation of localized optical modes,” Opt. Lett. 26, 1286–1288 (2001).
  53. E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited