OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 5 — May. 1, 2002
  • pp: 961–972

Signal-to-noise-ratio expressions in optical diffusion tomography

Charles L. Matson  »View Author Affiliations


JOSA A, Vol. 19, Issue 5, pp. 961-972 (2002)
http://dx.doi.org/10.1364/JOSAA.19.000961


View Full Text Article

Acrobat PDF (203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical diffusion tomography is a technology that is employed to obtain images of the heterogeneous nature of turbid media by using optical radiation. Noise ultimately limits the achievable spatial resolution in these reconstructed images; therefore it is of interest to develop signal-to-noise-ratio expressions that relate spatial resolution in the images to the underlying system and material properties. In this study, Fourier-domain signal-to-noise-ratio expressions are derived for two types of optical diffusion tomography systems: those that use amplitude-modulated illumination sources and those that use continuous-wave illumination sources. The signal-to-noise-ratio expressions are compared for these two types of systems and are validated by laboratory data.

© 2002 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5270) Medical optics and biotechnology : Photon density waves
(170.7050) Medical optics and biotechnology : Turbid media

Citation
Charles L. Matson, "Signal-to-noise-ratio expressions in optical diffusion tomography," J. Opt. Soc. Am. A 19, 961-972 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-5-961


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. A. Moon, R. Mahon, M. D. Duncan, and J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
  2. J. A. Moon and J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).
  3. A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
  4. J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
  5. V. Chernomordik, R. Nossal, and A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
  6. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
  7. J. C. Hebden, D. J. Hall, and D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
  8. D. J. Hall, J. C. Hebden, and D. T. Delpy, “Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media,” Med. Phys. 24, 361–368 (1997).
  9. H. Wabnitz and H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36, 64–74 (1997).
  10. J. Ripoll and M. Nieto-Vesperinas, “Spatial resolution of diffuse photon density waves,” J. Opt. Soc. Am. A 16, 1466–1476 (1999).
  11. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
  12. B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
  13. C. L. Matson, “Deconvolution-based spatial resolution in optical diffusion tomography,” Appl. Opt. 40, 5791–5801 (2001).
  14. C. L. Matson and H. Liu, “Backpropagation in turbid media,” J. Opt. Soc. Am. A 16, 1254–1265 (1999).
  15. M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  16. J. C. Dainty, “Stellar speckle interferometry,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 255–320.
  17. P. S. Idell and A. Webster, “Resolution limits for coherent optical imaging: signal-to-noise analysis in the spatial-frequency domain,” J. Opt. Soc. Am. A 9, 43–56 (1992).
  18. C. L. Matson and H. Liu, “Analysis of the forward problem with diffuse photon density waves in turbid media by use of a diffraction tomography model,” J. Opt. Soc. Am. A 16, 455–466 (1999).
  19. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. U.S.A. 94, 6468–6473 (1997).
  20. S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
  21. A. Kienle, L. Lige, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
  22. L. Gobin, L. Blanchot, and H. Saint-Jalmes, “Integrating the digitized backscattered image to measure absorption and reduced-scattering coefficients in vivo,” Appl. Opt. 38, 4217–4227 (1999).
  23. X. Cheng and D. A. Boas, “Diffuse optical reflection tomography with continuous-wave illumination,” Opt. Express 3, 118–123 (1998), http://www.opticsexpress.org/oearchive/source/5663.htm.
  24. J. R. Janesick, Scientific Charge-Coupled Devices (SPIE Press, Bellingham, Wash., 2001).
  25. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
  26. H. Liu, C. L. Matson, K. Lau, and R. R. Mapakshi, “Experimental validation of a backpropagation algorithm for three-dimensional breast tumor localization,” IEEE J. Sel. Top. Quantum Electron. 5, 1049–1057 (1999).
  27. B. W. Pogue and M. S. Patterson, “Error assessment of a wavelength tunable frequency domain system for noninvasive tissue spectroscopy,” J. Biomed. Opt. 1, 311–323 (1996).
  28. S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
  29. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
  30. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
  31. X. Li, D. N. Pattanayak, T. Durduran, J. P. Culver, B. Chance, and A. G. Yodh, “Near-field diffraction tomography with diffuse photon density waves,” Phys. Rev. E 61, 4295–4309 (2000).
  32. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1979).
  33. J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
  34. G. Barton, Elements of Green’s Functions and Propagation (Oxford U. Press, Oxford, UK, 1989).
  35. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965), p. 439.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited