OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1120–1128

Efficient analysis of periodic dielectric waveguides using Dirichlet-to-Neumann maps

Johannes Tausch and Jerome Butler  »View Author Affiliations

JOSA A, Vol. 19, Issue 6, pp. 1120-1128 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a numerical scheme for the analysis of periodic dielectric waveguides using Floquet–Bloch theory. The problem of finding the fundamental propagation modes is reduced to a nonlinear eigenvalue problem involving Dirichlet-to-Neumann maps. This approach leads to much smaller matrix problems than the ones that have appeared previously. By an increase of the discretization fineness, any desired precision of the method can be achieved. We discuss an eigensolver and extend the conventional rule to choose the branches of the transverse wave numbers. This ensures analytic dependence on the Floquet multiplier and convergence of the nonlinear solver. We demonstrate that even for a complicated multilayer waveguide structure the propagation factors can be calculated within seconds to several digits of accuracy.

© 2002 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.2770) Diffraction and gratings : Gratings
(130.2790) Integrated optics : Guided waves

Original Manuscript: February 5, 2001
Revised Manuscript: November 13, 2001
Manuscript Accepted: November 13, 2001
Published: June 1, 2002

Johannes Tausch and Jerome Butler, "Efficient analysis of periodic dielectric waveguides using Dirichlet-to-Neumann maps," J. Opt. Soc. Am. A 19, 1120-1128 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Collin, F. J. Zucker, Antenna Theory, Part 2, Vol. 7 of Inter-University Electronics Series (McGraw-Hill, New York, 1969).
  2. J. Jacobsen, “Analytical, numerical, and experimental investigation of guided waves on a periodically strip-loaded dielectric slab,” IEEE Trans. Antennas Propag. AP-18, 379–388 (1970). [CrossRef]
  3. K. C. Chang, V. Shah, T. Tamir, “Scattering and guiding of waves by dielectric gratings with arbitrary profiles,” J. Opt. Soc. Am. A 70, 804–813 (1980). [CrossRef]
  4. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994). [CrossRef]
  5. B. E. Little, W. P. Huang, S. K. Chaudhuri, “A multiple-scale analysis of grating-assisted couplers,” J. Lightwave Technol. 9, 1254–1263 (1991). [CrossRef]
  6. B. E. Little, H. A. Haus, “A variational coupled-mode theory for periodic waveguides,” IEEE J. Quantum Electron. 31, 2258–2264 (1995). [CrossRef]
  7. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  8. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  9. N. P. K. Cotter, T. W. Priest, J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995). [CrossRef]
  10. S. Peng, G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,” J. Opt. Soc. Am. A 12, 1087–1096 (1995). [CrossRef]
  11. R. E. Jorgenson, R. Mittra, “Efficient calculation of the free-space periodic Green’s function,” IEEE Trans. Antennas Propag. 38, 633–642 (1990). [CrossRef]
  12. A. F. Peterson, “An outward-looking differential equation formulation for scattering from one-dimensional periodic diffraction gratings,” Electromagnetics 14, 227–238 (1994). [CrossRef]
  13. S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 123–133 (1975). [CrossRef]
  14. G. Hadjicostas, J. K. Butler, G. A. Evans, N. W. Carlson, R. Amantea, “A numerical investigation of wave interactions in dielectric waveguides with periodic surface corrugations,” IEEE J. Quantum Electron. 26, 893–902 (1990). [CrossRef]
  15. J. K. Butler, W. E. Ferguson, G. A. Evans, P. Stabile, A. Rosen, “A boundary element technique applied to the analysis of waveguides with periodic surface corrugations,” IEEE J. Quantum Electron. 28, 1701–1707 (1992). [CrossRef]
  16. J. Tausch, J. Butler, “Floquet multipliers of periodic waveguides via Dirichlet-to-Neumann maps,” J. Comput. Phys. 159, 90–102 (2000). [CrossRef]
  17. J. L. Volakis, A. Chatterjee, L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, Piscataway, N.J., 1998).
  18. E. Allgower, K. Georg, “Continuation and path following,” in Acta Numerica 1993, A. Iserles, ed. (Cambridge U. Press, Cambridge, UK, 1993), pp. 1–64.
  19. N. H. Sun, J. K. Butler, G. A. Evans, L. Pang, “Analysis of grating-assisted directional couplers using the Floquet–Bloch theory,” J. Lightwave Technol. 15, 2301–2315 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited