OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1162–1171

Linear single-step image reconstruction in the presence of nonscattering regions

H. Dehghani and D. T. Delpy  »View Author Affiliations


JOSA A, Vol. 19, Issue 6, pp. 1162-1171 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001162


View Full Text Article

Enhanced HTML    Acrobat PDF (1142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There is growing interest in the use of near-infrared spectroscopy for the noninvasive determination of the oxygenation level within biological tissue. Stemming from this application, there has been further research in using this technique for obtaining tomographic images of the neonatal head, with the view of determining the level of oxygenated and deoxygenated blood within the brain. Because of computational complexity, methods used for numerical modeling of photon transfer within tissue have usually been limited to the diffusion approximation of the Boltzmann transport equation. The diffusion approximation, however, is not valid in regions of low scatter, such as the cerebrospinal fluid. Methods have been proposed for dealing with nonscattering regions within diffusing materials through the use of a radiosity-diffusion model. Currently, this new model assumes prior knowledge of the void region; therefore it is instructive to examine the errors introduced in applying a simple diffusion-based reconstruction scheme in cases where a nonscattering region exists. We present reconstructed images, using linear algorithms, of models that contain a nonscattering region within a diffusing material. The forward data are calculated by using the radiosity-diffusion model, and the inverse problem is solved by using either the radiosity-diffusion model or the diffusion-only model. When using data from a model containing a clear layer and reconstructing with the correct model, one can reconstruct the anomaly, but the qualitative accuracy and the position of the reconstructed anomaly depend on the size and the position of the clear regions. If the inverse model has no information about the clear regions (i.e., it is a purely diffusing model), an anomaly can be reconstructed, but the resulting image has very poor qualitative accuracy and poor localization of the anomaly. The errors in quantitative and localization accuracies depend on the size and location of the clear regions.

© 2002 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques

History
Original Manuscript: July 25, 2001
Revised Manuscript: October 25, 2001
Manuscript Accepted: October 25, 2001
Published: June 1, 2002

Citation
H. Dehghani and D. T. Delpy, "Linear single-step image reconstruction in the presence of nonscattering regions," J. Opt. Soc. Am. A 19, 1162-1171 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-6-1162

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited