OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1491–1500

Retinal images seen through a cataractous lens modeled as a phase-aberrating screen

Barbara Pierscionek, Roger J. Green, and Sergey G. Dolgobrodov  »View Author Affiliations

JOSA A, Vol. 19, Issue 8, pp. 1491-1500 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light propagation through a cataractous lens was modeled on the basis of a phase-aberrating medium. The optical frequency characteristics of the modeled optical system were estimated, and examples of foveal images with different values of aberration characteristics were calculated. The phase-aberration effects caused by relatively smooth fluctuations of the refractive index were found to cause a significant deterioration of the foveal image. This theoretical result gives an indication of the main factor that produces image degradation as shown in previous experiments and that is likely to occur in the cataractous eye.

© 2002 Optical Society of America

OCIS Codes
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.7050) Medical optics and biotechnology : Turbid media
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4060) Vision, color, and visual optics : Vision modeling
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.6130) Vision, color, and visual optics : Spatial resolution

Original Manuscript: July 26, 2001
Revised Manuscript: March 4, 2002
Manuscript Accepted: March 15, 2002
Published: August 1, 2002

Barbara Pierscionek, Roger J. Green, and Sergey G. Dolgobrodov, "Retinal images seen through a cataractous lens modeled as a phase-aberrating screen," J. Opt. Soc. Am. A 19, 1491-1500 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Trokel, “The physical basis for transparency of the crystalline lens,” Invest. Ophthalmol. 1, 493–501 (1962). [PubMed]
  2. G. B. Benedek, “Theory of transparency of the eye,” Appl. Opt. 10, 459–473 (1971). [CrossRef] [PubMed]
  3. A. Tardieu, M. Delaye, “Eye lens proteins and transparency: from light transmission theory to solution x-ray structural analysis,” Annu. Rev. Biophys. Biophys. Chem. 17, 47–70 (1988). [CrossRef] [PubMed]
  4. G. Suarez, A. L. Oronsky, M. H. L. J. Koch, “Age dependent structural changes in intact human lenses detected by synchrotron radiation x-ray scattering. Correlation with Maillard reaction protein fluorescence,” J. Biol. Chem. 268, 1716–1721 (1993).
  5. F. A. Bettelheim, M. J. Vinciguerra, “Laser-diffraction patterns of highly ordered super-structures in the lenses of bovine eyes,” Ann. N.Y. Acad. Sci. 172, 429–439 (1971). [CrossRef]
  6. M. J. Vinciguerra, F. A. Bettelheim, “Packing and orientation of fiber cells,” Exp. Eye Res. 1, 214–219 (1971). [CrossRef]
  7. F. A. Bettelheim, M. Paunovic, “Light scattering of normal human lens,” Biophys. J. 26, 85–100 (1973). [CrossRef]
  8. F. A. Bettelheim, L. Siew, “Biological-physical basis of lens transparency,” in Cell Biology of the Eye, D. S. McDevitt, ed. (Academic, New York, 1982).
  9. H. Goldmann, “Senile changes of the lens and the vitreous,” Am. J. Ophthalmol. 57, 1–12 (1964). [PubMed]
  10. B. Philipson, “Changes in the lens related to the reduction of transparency,” Exp. Eye Res. 16, 29–39 (1973). [CrossRef] [PubMed]
  11. B. Philipson, P. P. Fagerholm, “Human subcapsular cataract-distribution of protein in relation to opacification,” Exp. Eye Res. 33, 621–630 (1981). [CrossRef] [PubMed]
  12. B. Pierscionek, R. J. Green, S. G. Dolgobrodov, “Intraocular light scatter as modeled through a stratified medium,” Appl. Opt. 40, 6340–6348 (2001). [CrossRef]
  13. G. B. Benedek, “Cataract as a protein condensation disease: the Proctor lecture,” Invest. Ophthalmol. Visual Sci. 38, 1911–1921 (1997).
  14. G. O. Reynolds, J. L. Zuckerman, W. A. Dyes, D. Miller, “Holographic phase compensation techniques applied to human cataracts,” Opt. Eng. 12, 23–34 (1973). [CrossRef]
  15. J. L. Zuckerman, D. Miller, W. Dyes, M. Keller, “Degradation of vision through a simulated cataract,” Invest. Ophthalmol. 12, 213–224 (1973). [PubMed]
  16. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vols. I and II.
  17. J. A. Ratcliffe, “Some aspects of diffraction theory and their application to the ionosphere,” Rep. Prog. Phys. 19, 188–267 (1956). [CrossRef]
  18. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  19. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, San Diego, Calif., 1998).
  20. R. Navarro, E. Moreno-Barriuso, S. Bará, T. Mancebo, “Phase plates for wave-aberrations compensation in the human eye,” Opt. Lett. 25, 236–238 (2000). [CrossRef]
  21. R. Navarro, “Objective measurements of the optical image quality in the human eye,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 127–137 (2001), www.io.csic.es/saratov.pdf . [CrossRef]
  22. R. Navarro, “Objective measurement of the optical image quality in the human eye,” www.io.csic.es/tutor_rn1/v3dcmnt.htm (2002).
  23. R. V. Shack, “On the optical significance of the phase transfer function,” in Quantitative Imagery in the Biomedical Sciences II, R. E. Herron, ed., Proc. SPIE4, 39–43 (1974). [CrossRef]
  24. F. W. Campbell, F. W. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 558–578 (1965).
  25. F. W. Campbell, R. W. Gubisch, “Optical image quality of the human eye,” J. Physiol. 186, 558–578 (1966). [PubMed]
  26. J. Santamarı́a, P. Artal, J. Becós, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987). [CrossRef]
  27. P. Artal, J. Santamarı́a, J. Becós, “Phase-transfer function of the human eye and its influence on point-spread function and wave aberration,” J. Opt. Soc. Am. A 5, 1791–1795 (1988). [CrossRef] [PubMed]
  28. P. Artal, “Calculations of two-dimensional images for real eyes,” J. Opt. Soc. Am. A 7, 1374–1381 (1990). [CrossRef] [PubMed]
  29. P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Doublepass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995). [CrossRef]
  30. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995). [CrossRef]
  31. W. N. Charman, “Optics of the eye” in Handbook of Optics, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. II.
  32. H. von Helmholtz, Physiological Optics (The Optical Society of America, New York, 1924), Vol. I.
  33. H. Davson, Visual Optics, Vol. 4 of The Eye (Academic, London, 1969).
  34. G. A. Fry, Blur of the Retinal Image (The Ohio State University Press, Columbus, Ohio, 1955).
  35. R. Navarro, J. Santamarı́a, J. Becós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985). [CrossRef] [PubMed]
  36. H. H. Hopkins, “Image shift, phase distortion and the optical transfer function,” Opt. Acta 31, 345–368 (1984). [CrossRef]
  37. H. H. Hopkins, “The frequency response of a defocusing system,” Proc. R. Soc. London, Ser. A 231, 91–102 (1955). [CrossRef]
  38. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  39. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, San Francisco, Calif., 1968, 1996).
  40. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).
  41. M. Françon, Diffraction. Conherence in Optics (Pergamon, Oxford, UK, 1966).
  42. R. Courant, D. Hilbert, Methods of Mathematical Physics (Interscience, New York1962), Vol. 1.
  43. B. K. Pierscionek, D. Y. C. Chan, “The refractive index gradient of the human lens,” Invest. Ophthalmol. Visual Sci. 66, 822–829 (1989).
  44. B. K. Pierscionek, “Variation in refractive index and absorbance of 670 nm light with eye in cataract formation in human lens,” Exp. Eye Res. 60, 407–413 (1995). [CrossRef] [PubMed]
  45. B. K. Pierscionek, “Refractive index contours in the human lens,” Exp. Eye Res. 64, 887–893 (1997). [CrossRef] [PubMed]
  46. A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  47. P. Debye, A. M. Bueche, “Scattering by an inhomogeneous solid,” J. Appl. Phys. 20, 518–525 (1949). [CrossRef]
  48. C. L. Pekeris, “Note on the scattering of radiation in an inhomogeneous medium,” Phys. Rev. 71, 268–269 (1947). [CrossRef]
  49. G. P. Benedek, L. T. Chylack, T. Libondi, P. Magnante, M. Pennett, “Quantitative detection of the molecular changes associated with early catarogenesis in living human lens using quasielastic light scattering,” Curr. Eye Res. 6, 1421–1432 (1987). [CrossRef] [PubMed]
  50. G. M. Thurston, D. L. Hyden, P. Burrows, J. I. Clark, V. G. Taret, J. Kandel, M. Courogen, J. A. Peetermans, M. S. Bowen, D. Miller, K. L. Sullivan, R. Storb, H. Stern, G. B. Benedek, “Quasielastic light scattering study of the living human lens as a function of age,” Curr. Eye Res. 16, 197–207 (1987). [CrossRef]
  51. E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963).
  52. A. M. Yaglom, An Introduction to the Theory of Stationary Random Functions (Prentice-Hall, Englewood Cliffs, N.J., 1962).
  53. B. Philipson, “Biophysical studies on normal and cataractous rat lenses,” Acta Ophthalmol. Suppl. 103 (1969).
  54. G. Chan, A. T. A. Wood, “An algorithm for simulating stationary Gaussian random fields,” Appl. Statist. 46, 171–181 (1977).
  55. B. A. Wichmann, I. D. Hill, “Algorithm AS 183: an efficient and portable pseudo-random number generator,” Appl. Statist. 31, 188–190 (1982). [CrossRef]
  56. R. P. Hemenger, “Small-angle intraocular light scatter: a hypothesis concerning its source,” J. Opt. Soc. Am. A 5, 577–582 (1988). [CrossRef] [PubMed]
  57. R. P. Hemenger, “Dependence on angle and wavelength of light scattered by the ocular lens,” Ophthalmic Physiol. Opt. 16, 237–238 (1996). [CrossRef] [PubMed]
  58. J. Upatnieks, A. Vander Lugt, E. Leith, “Correction of lens aberrations by means of holography,” Appl. Opt. 5, 589–593 (1966). [CrossRef] [PubMed]
  59. H. Kogelnik, K. S. Pennington, “Holographic imaging through a random medium,” J. Opt. Soc. Am. 58, 273–274 (1968). [CrossRef]
  60. J. E. Ward, D. C. Auth, F. P. Carlson, “Lens aberration correction by holography,” Appl. Opt. 10, 896–900 (1971). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited