OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1532–1536

Axial apodization in 4Pi-confocal microscopy by annular binary filters

Manuel Martı́nez-Corral, Amparo Pons, and Marı́a-Teresa Caballero  »View Author Affiliations


JOSA A, Vol. 19, Issue 8, pp. 1532-1536 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001532


View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel technique for considerably decreasing the sidelobe height of the axial point-spread function of one-photon 4Pi-confocal microscopes. By means of a numerical example, in which the ratio between the excitation and the fluorescence wavelengths was set to ϵ = λ exc / λ det = 0.8 , we show that simply inserting a pair of properly designed two-ring binary masks in the illumination set allows the height of the axial sidelobes to be reduced from 20% to 5% of the height of the central peak. This allows one to receive the full benefit of the strong narrowness of the central lobe provided by the 4Pi-confocal technique.

© 2002 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.1790) Microscopy : Confocal microscopy
(220.1230) Optical design and fabrication : Apodization

History
Original Manuscript: September 18, 2001
Revised Manuscript: March 8, 2002
Manuscript Accepted: March 12, 2002
Published: August 1, 2002

Citation
Manuel Martı́nez-Corral, Amparo Pons, and Marı́a-Teresa Caballero, "Axial apodization in 4Pi-confocal microscopy by annular binary filters," J. Opt. Soc. Am. A 19, 1532-1536 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-8-1532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1999), Chap. 8.
  2. T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).
  3. S. Hell, E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992). [CrossRef]
  4. S. Hell, E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93, 277–282 (1992). [CrossRef]
  5. S. W. Hell, S. Lindek, E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41, 675–681 (1994). [CrossRef]
  6. M. Nagorni, S. W. Hell, “Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts,” J. Opt. Soc. Am. A 18, 36–48 (2001). [CrossRef]
  7. P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, “Two-photon excitation 4Pi confocal microscope: enhanced resolution for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995). [CrossRef]
  8. M. Schrader, S. W. Hell, H. T. M. van der Voort, “Three-dimensional super-resolution with 4Pi-confocal microscope using image restoration,” J. Appl. Phys. 84, 4033–4042 (1998). [CrossRef]
  9. M. Nagorni, S. W. Hell, “Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. II. Power and limitations of nonlinear image restoration,” J. Opt. Soc. Am. A 18, 49–51 (2001). [CrossRef]
  10. G. Toraldo di Francia, “Supergain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952). [CrossRef]
  11. P. Jacquinot, B. Rozien-Dossier, “Apodization,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1964), Vol. 3.
  12. G. R. Boyer, “Réalisation d’un filtrage super-résolvant,” Opt. Acta 30, 807–816 (1983). [CrossRef]
  13. G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979). [CrossRef]
  14. Z. S. Hegedus, V. Sarafis, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A 3, 1892–1896 (1986). [CrossRef]
  15. S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117, 20–24 (1995). [CrossRef]
  16. M. Martı́nez-Corral, P. Andrés, J. Ojeda-Castañeda, G. Saavedra, “Tunable axial superresolution by annular binary filters. Application to confocal microscopy,” Opt. Commun. 119, 491–498 (1995). [CrossRef]
  17. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245–247 (2000). [CrossRef]
  18. M. Martı́nez-Corral, P. Andrés, C. J. Zapata-Rodrı́guez, C. J. R. Sheppard, “Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters,” Optik (Stuttgart) 107, 145–148 (1998).
  19. Z. Ding, G. Wang, M. Gu, Z. Wang, Z. Fan, “Superresolution with an apodization film in a confocal setup,” Appl. Opt. 36, 360–363 (1997). [CrossRef] [PubMed]
  20. M. Kowalczyk, C. J. Zapata-Rodrı́guez, M. Martı́nez-Corral, “Asymmetric apodization in confocal imaging systems,” Appl. Opt. 37, 8206–8214 (1998). [CrossRef]
  21. M. Martı́nez-Corral, P. Andrés, C. J. Zapata-Rodrı́guez, M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun. 165, 267–278 (1999). [CrossRef]
  22. C. J. R. Sheppard, “Binary optics and confocal imaging,” Opt. Lett. 24, 505–506 (1999). [CrossRef]
  23. S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994). [CrossRef]
  24. The term apodization etymologically comes from the Greek (to remove foot), and involves the suppression, or at least a considerable decrease, of the sidelobes of the PSF.
  25. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  26. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, Berlin, 2000).
  27. C. J. R. Sheppard, H. J. Matthews, “Imaging in high-aperture optical systems,” J. Opt. Soc. Am. A 4, 1354–1360 (1987). [CrossRef]
  28. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image,” J. Opt. Soc. Am. 54, 240–244 (1964). [CrossRef]
  29. S. Grill, E. H. K. Stelzer, “Method to calculate lateral and axial gain factors of optical setups with a large solid angle,” J. Opt. Soc. Am. A 16, 2658–2665 (1999). [CrossRef]
  30. C. M. Blanca, J. Bewersdorf, S. W. Hell, “Single sharp spot in fluorescence microscopy of two opposing lenses,” Appl. Phys. Lett. 79, 2321–2323 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited