OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1599–1609

Saturated patterned excitation microscopy—a concept for optical resolution improvement

Rainer Heintzmann, Thomas M. Jovin, and Christoph Cremer  »View Author Affiliations


JOSA A, Vol. 19, Issue 8, pp. 1599-1609 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001599


View Full Text Article

Acrobat PDF (661 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The resolution of optical microscopy is limited by the numerical aperture and the wavelength of light. Many strategies for improving resolution such as 4Pi and I5M have focused on an increase of the numerical aperture. Other approaches have based resolution improvement in fluorescence microscopy on the establishment of a nonlinear relationship between local excitation light intensity in the sample and in the emitted light. However, despite their innovative character, current techniques such as stimulated emission depletion (STED) and ground-state depletion (GSD) microscopy require complex optical configurations and instrumentation to narrow the point-spread function. We develop the theory of nonlinear patterned excitation microscopy for achieving a substantial improvement in resolution by deliberate saturation of the fluorophore excited state. The postacquisition manipulation of the acquired data is computationally more complex than in STED or GSD, but the experimental requirements are simple. Simulations comparing saturated patterned excitation microscopy with linear patterned excitation microscopy (also referred to in the literature as structured illumination or harmonic excitation light microscopy) and ordinary widefield microscopy are presented and discussed. The effects of photon noise are included in the simulations.

© 2002 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2990) Imaging systems : Image formation theory
(110.4850) Imaging systems : Optical transfer functions
(170.0180) Medical optics and biotechnology : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics

Citation
Rainer Heintzmann, Thomas M. Jovin, and Christoph Cremer, "Saturated patterned excitation microscopy—a concept for optical resolution improvement," J. Opt. Soc. Am. A 19, 1599-1609 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-8-1599


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Heintzmann and C. Cremer, “Lateral modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, and P. M. Viallet, eds., Proc. SPIE 3568, 185–196 (1999).
  2. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
  3. T. Wilson, R. Juskaitis, and M. A. A. Neil, “A new approach to three dimensional imaging in microscopy,” Cell Vision 4, 231 (1997).
  4. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
  5. M. G. L. Gustafsson, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII, J. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 3919, 141–150 (2000).
  6. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000).
  7. J. T. Frohn, H. F. Knapp, and A. Stemmer, “Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation,” Opt. Lett. 26, 828–830 (2001).
  8. M. Nagorni and S. W. Hell, “Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. comparative study of concepts,” J. Opt. Soc. Am. A 18, 36–48 (2001).
  9. M. Minsky, “Microscopy apparatus,” U.S. patent 3, 013, 467, December 19, 1961.
  10. F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes,” Bioimaging 1, 187–196 (1993).
  11. F. Lanni, D. L. Taylor, and B. Bailey, “Field synthesis and optical subsectioning for standing wave microscopy,” U.S. patent 5, 801, 881, September 1, 1998.
  12. B. Albrecht, A. V. Failla, R. Heintzmann, and C. Cremer, “Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations,” J. Biomed. Opt. 6, 292–299 (2001).
  13. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Measurement of the 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
  14. S. W. Hell, M. Schrader, and H. T. M. van der Voort, “Farfield fluorescence microscopy with three-dimensional resolution in the 100 nm range,” J. Microsc. 185, 1–5 (1997).
  15. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, and T. Wilson, eds., Proc. SPIE 2655, 62–66 (1996).
  16. M. Gustafsson, J. Sedat, and D. Agard, “Method and apparatus for three-dimensional microscopy with enhanced depth resolution,” U.S. patent 5, 671, 085, September 23, 1997.
  17. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. 195, 10–16 (1999).
  18. R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white licht sources,” Nature (London) 383, 804–806 (1996).
  19. T. Wilson, R. Juskaitis, M. A. A. Neil, and M. Kozubeck, “An aperture correlation approach to confocal microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J. Conchello, and T. Wilson, eds., Proc. SPIE 2984, 21–23 (1997).
  20. In the literature patterned excitation techniques have also been named structured illumination microscopy, harmonic excitation light microscopy (HELM) and laterally modulated excitation (LMEM).
  21. P. J. Shaw, D. A. Agard, Y. Hirakoa, and J. W. Sedat, “Tilted view reconstruction in optical microscopy: three dimensional reconstruction of drosophila melanogaster embryo nuclei,” Biophys. J. 55, 101–110 (1989).
  22. R. Heintzmann, G. Kreth, and C. Cremer, “Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy—a method for improving 3D FISH images,” Anal. Cell Pathol. 20, 7–15 (2000).
  23. R. Heintzmann and C. Cremer, “Axial tomographic confocal fluorescence microscopy” J. Microsc. 206, 7–23 (2002).
  24. K. Ichie, “Laser scanning optical system and laser scanning optical apparatus,” U.S. patent 5, 796, 112, August 18, 1998.
  25. P. Hänninen and S. Hell, “Luminescence-scanning microscopy process and a luminescence scanning microscope utilizing picosecond or greater pulse lasers,” U.S. patent 5, 777, 732, July 7, 1998.
  26. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon fluorescence scanning microscopy,” Science 248, 73–76 (1990).
  27. S. W. Hell and M. Kroug, “Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit,” Appl. Phys. B 60, 495–497 (1995).
  28. S. W. Hell, “Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,” in Topics in Fluorescence Spectroscopy: Nonlinear and Two-Photon-Induced Fluorescence, J. Lakowicz, ed. (Plenum, New York, 1997), Vol. 5, pp. 361–426.
  29. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
  30. T. A. Klar, S. Jakops, M. Dyba, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier brokenby stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
  31. A. Schönle, P. E. Hänninen, and S. W. Hell, “Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy,” Ann. Phys. (Leipzig) 8, 115–133 (1999).
  32. A. Schönle and S. W. Hell, “Far-field fluorescence microscopy with repetitive excitation,” Eur. Phys. J. D 6, 283–290 (1999).
  33. D. R. Sandison, R. M. Williams, K. S. Wells, J. Strickler, and W. W. Webb, “Quantitative fluorescence confocal laser scanning microscopy (CLSM),” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, ed. (Plenum, New York, 1995), pp. 47–50.
  34. R. Y. Tsien and A. Waggoner, “Fluorophores for confocal microscopy,” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, ed. (Plenum, New York, 1995), pp. 267–268.
  35. A. Egner and S. W. Hell, “Equivalence of the Huygens–Fresnel and Debye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch,” J. Microsc. 193, 244–249 (1999).
  36. R. Y. Tsien and A. Waggoner, “Fluorophores for confocal microscopy,” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, ed. (Plenum, New York, 1995), pp. 269, 272.
  37. Q. S. Hanley, P. J. Verveer, M. J. Gemkov, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
  38. R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204, 119–137 (2001).
  39. P. A. Benedetti, V. Evangelista, D. Guidarini, and S. Vestri “Method for the acquisition of images by confocal,” U.S. patent 6, 016, 367, January 18, 2000.
  40. M. Sargent III, M. O. Scully and W. E., Jr., Lamb, Laser Physics (Addison-Wesley, London, 1982) (4th printing).
  41. P. J. Sementilli, B. R. Hunt, and M. S. Nadar, “Analysis of the limit to superresolution in incoherent imaging,” J. Opt. Soc. Am. A 10, 2265–2276 (1993).
  42. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 63, 429–457 (1946).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited