OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1610–1620

Optical efficiency of image sensor pixels

Peter B. Catrysse and Brian A. Wandell  »View Author Affiliations

JOSA A, Vol. 19, Issue 8, pp. 1610-1620 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to reproduce a high-quality image depends strongly on the image sensor light sensitivity. This sensitivity depends, in turn, on the materials, the circuitry, and the optical properties of the pixel. We calculate the optical efficiency of a complementary metal oxide semiconductor (CMOS) image sensor pixel by using a geometrical-optics phase-space approach. We compare the theoretical predictions with measurements made by using a CMOS digital pixel sensor, and we find them to be in agreement within 3%. Finally, we show how to use these optical efficiency calculations to trade off image sensor pixel sensitivity and functionality as CMOS process technology scales.

© 2002 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon
(080.2720) Geometric optics : Mathematical methods (general)
(110.2970) Imaging systems : Image detection systems

Original Manuscript: November 19, 2001
Manuscript Accepted: January 31, 2002
Published: August 1, 2002

Peter B. Catrysse and Brian A. Wandell, "Optical efficiency of image sensor pixels," J. Opt. Soc. Am. A 19, 1610-1620 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Janesick, K. Evans, T. Elliot, “Charge-coupled-device response to electron beam energies of less than 1 keV up to 20 keV,” Opt. Eng. 26, 686–691 (1987).
  2. B. Fowler, A. El Gamal, D. Yang, H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” in Solid State Sensor Arrays: Development and Applications II, M. M. Blouke, ed., Proc. SPIE3301, 178–185 (1998). [CrossRef]
  3. D. Yang, H. Tian, B. Fowler, X. Liu, A. El Gamal, “Characterization of CMOS image sensors with Nyquist rate pixel level ADC,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds., Proc. SPIE3650, 52–62 (1999). [CrossRef]
  4. J. Giest, H. Baltes, “High accuracy modeling of photodiode quantum efficiency,” Appl. Opt. 28, 3929–3938 (1989). [CrossRef]
  5. D. Yang, A. El Gamal, B. Fowler, H. Tian, “A 640×512 CMOS image sensor with ultrawide dynamic range floating-point pixel-level ADC,” IEEE J. Solid-State Circuits 34, 1821–1834 (1999). [CrossRef]
  6. J. A. Penkethman, “Calibrations and idiosyncrasies of micro-lensed CCD cameras,” in Current Developments in Optical Design and Optical Engineering VIII, R. E. Fischer, W. J. Smith, eds., Proc. SPIE3779, 241–249 (1999). [CrossRef]
  7. P. Catrysse, X. Liu, A. El Gamal, “QE reduction due to pixel vignetting in CMOS image sensors,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications, M. M. Blouke, N. Sampat, G. M. Williams, T. Yeh, eds., Proc. SPIE3965, 420–430 (2000). [CrossRef]
  8. Luminous, Silvaco International, Santa Clara, Calif., 1995.
  9. Medici, Avanti Corporation, Fremont, Calif., 1998.
  10. M. Hideki, “Simulation for 3-D optical and electrical analysis of CCD,” IEEE Trans. Electron Devices 44, 1604–1610 (1997). [CrossRef]
  11. R. J. Pegis, “The modern development of Hamiltonian optics,” in Progress in Optics I, E. Wolf, ed. (North-Holland, Amsterdam, 1961), pp. 1–29.
  12. R. Winston, “Light collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245–247 (1970). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, San Francisco, Calif., 1996), p. 404.
  14. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
  15. D. Dragoman, “The Wigner distribution function in optics and optoelectronics,” in Progress in Optics XXXVII, E. Wolf, ed. (Elsevier Science, Amsterdam, 1997), pp. 1–56.
  16. A. Walther, “Gabor’s theorem and energy transfer through lenses,” J. Opt. Soc. Am. 57, 639–644 (1967). [CrossRef]
  17. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986), p. 52.
  18. W. H. Steel, “Luminosity, throughput, or etendue,” Appl. Opt. 13, 704–705 (1974). [CrossRef] [PubMed]
  19. A. A. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996). [CrossRef]
  20. M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978). [CrossRef]
  21. P. C. S. Hayfield, G. W. T. White, “An assessment of the suitability of the Drude–Tronstad polarized light method for the study of film growth on polycrystalline metals,” in Ellipsometry in the Measurement of Surfaces and Thin Films, N. M. Bashara, A. B. Buckman, A. C. Hall, eds. (National Bureau of Standards, Washington, D.C., 1964), Vol. 256, pp. 157–200.
  22. E. R. Fossum, “Active pixel sensors: are CCD’s dinosaurs?” in Charge-Coupled Devices and Solid State Optical Sensors III, M. M. Blouke, ed., Proc. SPIE1900, 2–14 (1993). [CrossRef]
  23. S. Kleinfelder, S. Lim, X. Liu, A. El Gamal, “A 10kframes/s 0.18μm CMOS digital pixel sensor with pixel-level memory,” in 2001 International Solid-State Circuits Conference—Digest of Technical Papers (IEEE Press, Piscataway, N.J., 2001), pp. 88–89.
  24. B. Wandell, P. Catrysse, J. DiCarlo, D. Yang, A. El Gamal, “Multiple capture single image architecture with a CMOS sensor,” in Proceedings of the International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives (Society of Multispectral Imaging of Japan, Chiba, Japan, 1999), pp. 11–17.
  25. F. Abelès, “Recherches sur la propagation des ondes electromagnetiques sinusoidales dans les milieux stratifies: application aux couches minces,” Ann. Phys. (Paris) 5, 596–640 (1950).
  26. F. Abelès, “Recherches sur la propagation des ondes electromagnetiques sinusoidales dans les milieux stratifies: application aux couches minces,” Ann. Phys. (Paris) 5, 706–782 (1950).
  27. M. Born, E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, UK, 1980), pp. 38–41.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited