## Numerical simulation of an arbitrarily ended asymmetrical slab waveguide by guided-mode extracted integral equations

JOSA A, Vol. 19, Issue 8, pp. 1649-1657 (2002)

http://dx.doi.org/10.1364/JOSAA.19.001649

Enhanced HTML Acrobat PDF (282 KB)

### Abstract

The scattering phenomenon from an arbitrary-shaped end of a asymmetrical slab waveguide for the cases of TE and TM guided modes is simulated by means of boundary integral equations that are called guided-mode extracted integral equations. The integral equations that we derive can be solved by the conventional boundary-element method. Numerical results are presented for problems of three-layer asymmetrical waveguides with tilted ends. The reflection coefficient, reflected and scattered powers, and radiation patterns are calculated numerically for the cases of incident TE and TM guided modes.

© 2002 Optical Society of America

**OCIS Codes**

(060.2430) Fiber optics and optical communications : Fibers, single-mode

(130.2790) Integrated optics : Guided waves

(230.7400) Optical devices : Waveguides, slab

(260.2110) Physical optics : Electromagnetic optics

(290.0290) Scattering : Scattering

(350.5610) Other areas of optics : Radiation

**History**

Original Manuscript: January 27, 2002

Revised Manuscript: March 29, 2002

Manuscript Accepted: March 29, 2002

Published: August 1, 2002

**Citation**

Dao Ngoc Chien, Masahiro Tanaka, and Kazuo Tanaka, "Numerical simulation of an arbitrarily ended asymmetrical slab waveguide by guided-mode extracted integral equations," J. Opt. Soc. Am. A **19**, 1649-1657 (2002)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-8-1649

Sort: Year | Journal | Reset

### References

- K. Aoyama, K. Nakagawa, T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron. QE-17, 862–868 (1981). [CrossRef]
- E. Nishimura, N. Morita, N. Kumagai, “Scattering of guided-modes caused by an arbitrarily shaped broken end in a dielectric slab waveguide,” IEEE Trans. Microwave Theory Tech. MTT-31, 923–930 (1983). [CrossRef]
- D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49, 273–290 (1970). [CrossRef]
- G. H. Brooke, M. M. Z. Kharadly, “Step discontinuities on dielectric waveguides,” Electron. Lett. 12, 473–475 (1976). [CrossRef]
- T. E. Rozzi, “Rigorous analysis of the step discontinuity in a planar dielectric waveguide,” IEEE Trans. Microwave Theory Tech. MTT-26, 738–746 (1978). [CrossRef]
- K. Morishita, S. Inagaki, N. Kumagai, “Analysis of discontinuities in dielectric waveguides by means of the least-squares boundary residual method,” IEEE Trans. Microwave Theory Tech. MTT-27, 310–315 (1979). [CrossRef]
- A. Ittipiboon, M. Hamid, “Scattering of surface waves at a slab waveguide discontinuity,” Proc. Inst. Electr. Eng. 126, 798–804 (1979). [CrossRef]
- H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978). [CrossRef]
- K. Uchida, K. Aoki, “Scattering of surface waves on transverse discontinuities in symmetrical three-layer dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-32, 11–19 (1984). [CrossRef]
- Y. P. Chiou, H. C. Chang, “Analysis of optical waveguide discontinuities using Pade approximants,” IEEE Photon. Technol. Lett. 9, 964–966 (1997). [CrossRef]
- A. B. Manenkov, “Propagation of a surface wave along a dielectric waveguide with an abrupt change of parameters. II: Solution by variational method,” Radiophys. Quantum Electron. 25, 1050–1055 (1982). [CrossRef]
- A. B. Manenkov, “Step discontinuities in dielectric waveguide (fibres),” Opt. Quantum Electron. 22, 65–76 (1990). [CrossRef]
- A. B. Manenkov, “Reflection of the surface mode from an abruptly ended W-fibre,” IEE Proc. J. 139, 101–104 (1992).
- T. J. M. Boyd, I. Moshkun, I. M. Stephenson, “Radiation losses due to discontinuities in asymmetric three-layer optical waveguides,” Opt. Quantum Electron. 12, 143–158 (1980). [CrossRef]
- I. G. Tigelis, A. B. Manenkov, “Scattering from an abruptly terminated asymmetrical slab waveguide,” J. Opt. Soc. Am. A 16, 523–532 (1999). [CrossRef]
- G. Latsas, A. B. Manenkov, I. G. Tigelis, E. Sarri, “Reflectivity properties of an abruptly ended asymmetrical slab waveguide for the case of transverse magnetic modes,” J. Opt. Soc. Am. A 17, 162–172 (2000). [CrossRef]
- Q. Liu, W. C. Chew, “Analysis of discontinuities in planar dielectric waveguides: an eigenmode propagation method,” IEEE Trans. Microwave Theory Tech. 39, 422–429 (1991). [CrossRef]
- K. Ogusu, “Transmission characteristics of single-mode asymmetric dielectric waveguide Y-junction,” Opt. Commun. 53, 169–172 (1985). [CrossRef]
- C. Vassallo, “Reflectivity of multi-dielectric coatings depos-ited on the end facet of a weakly guiding dielectric slab waveguide,” J. Opt. Soc. Am. A 5, 1918–1928 (1988). [CrossRef]
- J. Buus, “Analytic approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron. QE-17, 2256–2257 (1981). [CrossRef]
- M. Kosiba, K. Ooishi, T. Miki, M. Suzuki, “Finite-element analysis of the discontinuities in a dielectric slab waveguide bounded by parallel plates,” Electron. Lett. 18, 33–34 (1982). [CrossRef]
- M. Kosiba, M. Suzuki, “Boundary-element analysis of dielectric slab waveguide discontinuities,” Appl. Opt. 25, 828–829 (1986). [CrossRef]
- E. Nishimura, N. Morita, N. Kumagai, “An integral equation approach to electromagnetic scattering from arbitrary shaped junction between multilayered dielectric planer waveguides,” J. Lightwave Technol. LT-3, 887–894 (1985). [CrossRef]
- D. Marcuse, Theory of Dielectric Optical Waveguide, 2nd ed. (Academic, London, 1991), Chap. 1.
- K. Tanaka, M. Kojima, “New boundary integral equa-tions for computer-aided design of dielectric waveguide circuits,” J. Opt. Soc. Am. A 6, 667–674 (1989). [CrossRef]
- K. Tanaka, M. Tanaka, “Computer-aided design of dielectric optical waveguide by the boundary-element method based on guided-mode extracted integral equations,” J. Opt. Soc. Am. A 13, 1362–1368 (1996). [CrossRef]
- K. Tanaka, M. Tanaka, H. Tashima, H. Ootera, Y. Yoshino, “New integral equation method for CAD of open waveguide bends,” Radio Sci. 28, 1219–1227 (1993). [CrossRef]
- M. Tanaka, K. Tanaka, “Boundary integral equations for computer-aided design and simulations of near-field optics: two-dimensional optical manipulator,” J. Opt. Soc. Am. A 15, 101–108 (1997). [CrossRef]
- K. Tanaka, M. Tanaka, T. Omoya, “Boundary integral equations for a two-dimensional simulator of a photon scanning tunneling microscope,” J. Opt. Soc. Am. A 15, 1918–1931 (1998). [CrossRef]
- K. Tanaka, “New integral equations for designing dielectric waveguide bend circuits: guided-mode extracted integral equations,” Electron. Commun. Jpn. Part 2 76, 1–11 (1993). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.