OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1701–1711

Traveling and evanescent parts of the electromagnetic Green’s tensor

Henk F. Arnoldus and John T. Foley  »View Author Affiliations

JOSA A, Vol. 19, Issue 8, pp. 1701-1711 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The angular spectrum representation of the electromagnetic Green’s tensor has a part that is a superposition of exponentially decaying waves in the +z and -z directions (evanescent part) and a part that is a superposition of traveling waves, both of which are defined by integral representations. We have derived an asymptotic expansion for the z dependence of the evanescent part of the Green’s tensor and obtained a closed-form solution in terms of the Lommel functions, which holds in all space. We have shown that the traveling part can be extracted from the Green’s tensor by means of a filter operation on the tensor, without regard to the angular spectrum integral representation of this part. We also show that the so-called self-field part of the tensor is properly included in the integral representation, and we were able to identify this part explicitly.

© 2002 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(240.6690) Optics at surfaces : Surface waves
(260.2110) Physical optics : Electromagnetic optics

Original Manuscript: November 19, 2001
Revised Manuscript: February 28, 2002
Manuscript Accepted: March 11, 2002
Published: August 1, 2002

Henk F. Arnoldus and John T. Foley, "Traveling and evanescent parts of the electromagnetic Green’s tensor," J. Opt. Soc. Am. A 19, 1701-1711 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, “Scanning near-field optical microscopy,” in Advances in Optical and Electron Microscopy, T. Mulvey, C. J. R. Sheppard, eds. (Academic, San Diego, Calif., 1991), p. 243.
  2. D. W. Pohl, D. Courjon, eds., Near Field Optics, Vol. 242 of Proceedings of the NATO Advanced Research Workshop on Near Field Optics, Series E, Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1993).
  3. D. Courjon, C. Bainier, “Near-field microscopy and near-field optics,” Rep. Prog. Phys. 57, 989–1028 (1994). [CrossRef]
  4. M. A. Paesler, P. J. Moyer, Near-Field Optics: Theory, Instrumentation, and Applications (Wiley, New York, 1996).
  5. M. Ohtsu, ed., Near-Field Nano/Atom Optics and Technology (Springer, Berlin, 1998).
  6. K. T. V. Grattan, B. T. Meggitt eds., Optical Fiber Sensor Technology: Fundamentals (Kluwer Academic, Boston, Mass., 2000).
  7. H. F. Arnoldus, “Representation of the near-field, middle-field, and far-field electromagnetic Green’s functions in reciprocal space,” J. Opt. Soc. Am. B 18, 547–555 (2001). [CrossRef]
  8. J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105, 489–504 (1981). [CrossRef]
  9. J. E. Sipe, “New Green function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481–489 (1987). [CrossRef]
  10. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977). [CrossRef]
  11. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977). [CrossRef]
  12. H. F. Arnoldus, T. F. George, “Phase-conjugated fluorescence,” Phys. Rev. A 43, 3675–3689 (1991). [CrossRef] [PubMed]
  13. A. Baños, “Dipole radiation in the presence of a conducting half-space,” International Series of Monographs in Electromagnetic Waves, Vol. 9, A. L. Cullen, V. A. Fock, J. R. Wait, eds. (Pergamon, Oxford, UK, 1966).
  14. C. T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Intext, Scranton, Pa., 1971).
  15. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999), App. III, p. 890.
  16. G. C. Sherman, J. J. Stamnes, É. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760–776 (1976). [CrossRef]
  17. T. Setälä, M. Kaivola, A. T. Friberg, “Decomposition of the point-dipole field into homogeneous and evanescent parts,” Phys. Rev. E 59, 1200–1206 (1999). [CrossRef]
  18. A. V. Shchegrov, P. S. Carney, “Far-field contribution to the electromagnetic Green’s tensor from evanescent modes,” J. Opt. Soc. Am. A 16, 2583–2584 (1999). [CrossRef]
  19. R. R. Chance, A. Prock, R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 39, 1–65 (1978).
  20. V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).
  21. R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emit-ting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974). [CrossRef]
  22. R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975). [CrossRef]
  23. E. Wolf, J. T. Foley, “Do evanescent waves contribute to the far field?” Opt. Lett. 23, 16–18 (1998). [CrossRef]
  24. M. Xiao, “Evanescent waves do contribute to the far field,” J. Mod. Opt. 46, 729–733 (1999). [CrossRef]
  25. P. S. Carney, D. G. Fisher, J. T. Foley, A. T. Friberg, A. V. Shchegrov, T. D. Fisher, E. Wolf, “Comment: evanescent waves do contribute to the far field,” J. Mod. Opt. 47, 757–758 (2000).
  26. A. Lakhtakia, W. S. Weiglhofer, “Evanescent plane waves and the far field: resolution of a controversy,” J. Mod. Opt. 47, 759–763 (2000). [CrossRef]
  27. J. van Kranendonk, J. E. Sipe, “Foundations of the macroscopic electromagnetic theory of dielectric media,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1977), Vol. 25, pp. 246, ff.
  28. O. Keller, “Local fields in the electrodynamics of mesoscopic media,” Phys. Rep. 268, 85–262 (1996). [CrossRef]
  29. O. Keller, “Attached and radiated electromagnetic fields of an electric point dipole,” J. Opt. Soc. Am. B 16, 835–847 (1999). [CrossRef]
  30. J. D. Jackson, Classical Electrodynamics, 2th ed. (Wiley, New York, 1975), p. 141.
  31. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Sec. 3.2.4.
  32. O. Keller, “Screened electromagnetic propagators in nonlocal metal optics,” Phys. Rev. B 34, 3883–3899 (1986). [CrossRef]
  33. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 275–276.
  34. N. Bleistein, R. A. Handelsman, Asymptotic Expansions of Integrals (Dover, New York, 1975), Chap. 3.
  35. M. V. Berry, “Asymptotics of evanescence,” J. Mod. Opt. 48, 1535–1541 (2001). [CrossRef]
  36. A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Special Functions, Vol. 2 of Integrals and Series (Gordon & Breach, New York, 1986), p. 188, no. It should be noted that this formula contains a misprint. Here, [exp(ia …)…] should read [-i exp(ia …)…].
  37. D. C. Bertilone, “The contributions of homogeneous and evanescent plane waves to the scalar optical field: exact diffraction formulae,” J. Mod. Opt. 38, 865–875 (1991). [CrossRef]
  38. D. C. Bertilone, “Wave theory for a converging spherical incident wave in an infinite-aperture system,” J. Mod. Opt. 38, 1531–1536 (1991). [CrossRef]
  39. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U. Press, Cambridge, UK, 1922), p. 537.
  40. Page 487 of Ref. 15.
  41. G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 4th ed. (Academic, San Diego, Calif., 1995), p. 847.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited