OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 1794–1802

Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication

Jennifer C. Ricklin and Frederic M. Davidson  »View Author Affiliations


JOSA A, Vol. 19, Issue 9, pp. 1794-1802 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001794


View Full Text Article

Acrobat PDF (265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A partially coherent quasi-monochromatic Gaussian laser beam propagating in atmospheric turbulence is examined by using a derived analytic expression for the cross-spectral density function. Expressions for average intensity, beam size, phase front radius of curvature, and wave-front coherence length are obtained from the cross-spectral density function. These results provide a model for a free-space laser transmitter with a phase diffuser used to reduce pointing errors.

© 2002 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(030.1640) Coherence and statistical optics : Coherence
(060.4510) Fiber optics and optical communications : Optical communications

Citation
Jennifer C. Ricklin and Frederic M. Davidson, "Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication," J. Opt. Soc. Am. A 19, 1794-1802 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-9-1794


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Belmonte, A. Comeron, J. A. Rubio, J. Bara, and E. Fernandez, “Atmospheric-turbulence-induced power-fade statistics for a multiaperture optical receiver,” Appl. Opt. 36, 8632–8638 (1997).
  2. I. I. Kim, H. Hakakha, P. Adhikari, E. J. Korevaar, and A. K. Majumdar, “Scintillation reduction using multiple apertures,” in Free-Space Laser Communication Technologies IX, G. Mecherle, ed., Proc. SPIE 2990, 102–113 (1997).
  3. Y. E. Yenice and B. G. Evans, “Adaptive beam-size control for ground-to-space laser communications,” in Free-Space Laser Communication Technologies X, G. Mecherle, ed., Proc. SPIE 3266, 221–230 (1998).
  4. B. M. Levine, E. A. Martinsen, A. Wirth, A. Jankevics, M. Toledo-Quinones, F. Landers, and T. L. Bruno, “Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive optics corrections in laser communications,” Appl. Opt. 37, 4553–4560 (1998).
  5. R. K. Tyson, “Adaptive optics and ground-to-space laser communications,” Appl. Opt. 35, 3640–3646 (1996).
  6. M. L. Plett, P. R. Barbier, D. W. Rush, P. Polak-Dingels, and B. M. Levine, “Measurement error for a Shack–Hartmann wavefront sensor in strong scintillation conditions,” in Propagation and Imaging through the Atmosphere II, L. R. Bissonnette, ed., Proc. SPIE 3433, 93–102 (1998).
  7. V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spektrosk. 54, 1054–1059 (1983).
  8. J. C. Ricklin, F. D. Davidson, and T. Weyrauch, “Free space laser communication using a partially coherent source,” in Optics in Atmospheric Propagation and Adaptive Systems IV, A. Kohnle, J. D. Gonglewski, and T. J. Schmugge, eds., Proc. SPIE 4538, 13–23 (2001).
  9. V. I. Polejaev and J. C. Ricklin, “Controlled phase diffuser for a laser communication link,” in Artificial Turbulence for Imaging and Wave Propagation, J. D. Gonglewski and M. A. Vorontsov, eds., Proc. SPIE 3432, 103–107 (1998).
  10. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  11. T. Friberg and R. L. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982).
  12. M. S. Belenkii and V. L. Mironov, “Coherence of the field of a laser beam in a turbulent atmosphere,” Sov. J. Quantum Electron. 10, 595–597 (1980).
  13. M. S. Belenkii, A. I. Kon, and V. L. Mironov, “Turbulent dis-tortions of the spatial coherence of a laser beam,” Sov. J. Quantum Electron. 7, 287–290 (1977).
  14. S. C. H. Wang and M. A. Plonus, “Optical beam propagation for a partially coherent source in the turbulent atmosphere,” J. Opt. Soc. Am. 69, 1297–1304 (1979).
  15. R. L. Fante, “The effect of source temporal coherence on light scintillations in weak turbulence,” J. Opt. Soc. Am. 69, 71–73 (1979).
  16. Y. Baykal, M. A. Plonus, and S. J. Wang, “The scintillations for weak atmospheric turbulence using a partially coherent source beam,” Radio Sci. 18, 551–556 (1983).
  17. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vols. I and II.
  18. A. Ishimaru, “The beam wave case in remote sensing,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer, New York, 1978), Chap. 5.
  19. W. B. Miller, J. C. Ricklin, and L. C. Andrews, “Log-amplitude variance and wave structure function: a new perspective for Gaussian beams,” J. Opt. Soc. Am. A 10, 661–672 (1993).
  20. L. C. Andrews, W. B. Miller, and J. C. Ricklin, “Geometrical representation of Gaussian beams propagating through complex optical systems,” Appl. Opt. 32, 5918–5929 (1993).
  21. The notation ẑ for normalized distance is introduced in Ref. 22, and the symbol r̂ for the normalized focusing parameter is introduced here. Previously used symbols for these quantities include ẑ=Ω or ẑ=Λo, and r̂=Ωo or r̂= Θo.
  22. M. A. Vorontsov, Wavefront Control in Optics (Oxford U. Press, New York, to be published), Chap. 1.
  23. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Bellingham, Wash., 2001).
  24. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, Bellingham, Wash., 1998).
  25. Z. I. Feizulin and Yu. A. Kravtsov, “Broadening of a laser beam in a turbulent medium,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 10, 68–73 (1967).
  26. R. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971).
  27. A. C. Schell, “The multiple plate antenna,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1961).
  28. H. T. Yura, “Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium,” Appl. Opt. 11, 1399–1406 (1972).
  29. J. C. Ricklin and F. M. Davidson, “Point-to-point wireless communication using partially coherent optical fields,” in Free-Space Laser Communication and Laser Imaging, D. G. Voelz and J. C. Ricklin, eds., Proc. SPIE 4489, 156–165 (2001).
  30. J. C. Ricklin, W. B. Miller, and L. C. Andrews, “Effective beam parameters and the turbulent beam waist for convergent Gaussian beams,” Appl. Opt. 34, 7059–7065 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited