Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Alternative equations of magnetophotoelasticity and approximate solution of the inverse problem

Not Accessible

Your library or personal account may give you access

Abstract

In magnetophotoelasticity, photoelastic models are investigated in a magnetic field in order to initiate rotation of the plane of polarization that is due to the Faraday effect. The method has been used for the measurement of stress distributions that are in equilibrium on the wave normal and therefore cannot be measured with the traditional photoelastic technique. In this category belong bending stresses in plates and shells and residual stresses in glass plates. Two new systems of equations of magnetophotoelasticity are derived. One of them describes evolution of the polarization of light in a magnetophotoelastic medium in terms of eigenvectors, the other in terms of distinctive parameters. For the latter system, an approximate closed-form solution has been found. The integral Wertheim law has been generalized for the case of stress states in equilibrium when rotation of the plane of polarization is present.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
On the generalized Wertheim law in integrated photoelasticity

Leo Ainola and Hillar Aben
J. Opt. Soc. Am. A 25(8) 1843-1849 (2008)

On the optical theory of photoelastic tomography

Leo Ainola and Hillar Aben
J. Opt. Soc. Am. A 21(6) 1093-1101 (2004)

Transformation equation in three-dimensional photoelasticity

Leo Ainola and Hillar Aben
J. Opt. Soc. Am. A 23(3) 741-746 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (129)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved