OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 1919–1928

Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation

Wataru Nakagawa, Rong-Chung Tyan, and Yeshaiahu Fainman  »View Author Affiliations


JOSA A, Vol. 19, Issue 9, pp. 1919-1928 (2002)
http://dx.doi.org/10.1364/JOSAA.19.001919


View Full Text Article

Acrobat PDF (810 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an extension of the rigorous coupled-wave analysis technique to analyze second-harmonic generation (SHG) in periodic optical nanostructures in the undepleted-pump approximation. We apply this method to analyze SHG in two example nanostructures for which we predict enhanced nonlinearity due to transverse near-field localization of the fundamental optical field in the nonlinear material. First, we examine a periodic nanostructure that yields up to twice the transmitted SHG intensity output compared with the bulk nonlinear material but only for small nanostructure depths because of mismatch of the fundamental and second-harmonic mode phase velocities. Second, we develop and analyze a modified nanostructure and find that this nanostructure concurrently achieves transverse localization and phase matching for SHG. In principle, this permits an arbitrary coherent interaction length, and for several specific nanostructure depths we predict a transmitted SHG intensity output more than two orders of magnitude greater than that of the bulk material.

© 2002 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(230.4320) Optical devices : Nonlinear optical devices

Citation
Wataru Nakagawa, Rong-Chung Tyan, and Yeshaiahu Fainman, "Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation," J. Opt. Soc. Am. A 19, 1919-1928 (2002)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-19-9-1919


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Lalanne and J.-P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851 (1998).
  2. J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A 16, 1157–1167 (1999).
  3. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21, 1513–1515 (1996).
  4. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997).
  5. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283–295 (1993).
  6. R.-C. Tyan, P.-C. Sun, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, F. Xu, A. Scherer, and Y. Fainman, “Subwavelength multilayer binary grating design for implementing photonic crystals,” in Quantum Optoelectronics, Vol. 9 of 1997 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1997), pp. 35–37.
  7. W. Nakagawa, P.-C. Sun, C.-H. Chen, and Y. Fainman, “Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities,” Opt. Lett. 27, 191–193 (2002).
  8. W. Nakagawa, R.-C. Tyan, P.-C. Sun, and Y. Fainman, “Near-field localization of ultrashort optical pulses in transverse 1-D periodic nanostructures,” Opt. Express 7, 123–128 (2000), http://www.opticsexpress.org.
  9. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992).
  10. R. W. Boyd and J. E. Sipe, “Nonlinear optical susceptibilities of layered composite materials,” J. Opt. Soc. Am. B 11, 297–303 (1994).
  11. G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).
  12. K. P. Yuen, M. F. Law, K. W. Yu, and P. Sheng, “Enhancement of optical nonlinearity through anisotropic microstructures,” Opt. Commun. 148, 197–207 (1998).
  13. H. Ma, R. Xiao, and P. Sheng, “Third-order optical nonlinearity enhancement through composite microstructures,” J. Opt. Soc. Am. B 15, 1022–1029 (1998).
  14. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
  15. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
  16. A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
  17. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
  18. K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, “Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides,” Opt. Lett. 26, 1785–1787 (2001).
  19. E. U. Rafailov, P. Loza-Alvarez, C. T. A. Brown, W. Sibbett, R. M. De La Rue, P. Millar, D. A. Yanson, J. S. Roberts, and P. A. Houston, “Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal,” Opt. Lett. 26, 1984–1986 (2001).
  20. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
  21. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
  22. E. N. Glytsis and T. K. Gaylord, “Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings,” J. Opt. Soc. Am. A 4, 2061–2080 (1987).
  23. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
  24. L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited