OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 2, Iss. 10 — Oct. 1, 1985
  • pp: 1644–1666

Image gathering and processing: information and fidelity

Friedrich O. Huck, Carl L. Fales, Nesim Halyo, Richard W. Samms, and Kathryn Stacy  »View Author Affiliations


JOSA A, Vol. 2, Issue 10, pp. 1644-1666 (1985)
http://dx.doi.org/10.1364/JOSAA.2.001644


View Full Text Article

Enhanced HTML    Acrobat PDF (2347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scenes indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr’s model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.

© 1985 Optical Society of America

History
Original Manuscript: September 21, 1984
Manuscript Accepted: May 13, 1985
Published: October 1, 1985

Citation
Friedrich O. Huck, Nesim Halyo, Kathryn Stacy, Richard W. Samms, and Carl L. Fales, "Image gathering and processing: information and fidelity," J. Opt. Soc. Am. A 2, 1644-1666 (1985)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-2-10-1644


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. B. Fellgett, E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London 247, 369–407 (1955). [CrossRef]
  2. E. H. Linfoot, “Information theory and optical images,” J. Opt. Soc. Am. 45, 808–819 (1955). [CrossRef]
  3. E. H. Linfoot, “Transmission factors and optical design,” J. Opt. Soc. Am. 46, 740–752 (1956). [CrossRef]
  4. E. H. Linfoot, “Quality evaluations of optical systems,” Opt. Acta 5, 1–14 (1958). [CrossRef]
  5. E. H. Linfoot, “Optical image evaluation from the standpoint of communication theory,” Physica XXIV, 476–494 (1958). [CrossRef]
  6. W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am. A 1, 241–250 (1984). [CrossRef]
  7. D. Marr, S. Ullman, “Bandpass channels, zero-crossings, and early visual information processing,” J. Opt. Soc. Am. 69, 914–916 (1979). [CrossRef] [PubMed]
  8. D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980). [CrossRef]
  9. D. Marr, Vision (Freeman, San Francisco, Calif., 1982).
  10. M. Brady, “Computational approaches to image understanding,” Comput. Surv. 14, 3–71 (1982). [CrossRef]
  11. E. C. Hildreth, “The detection of intensity changes by computer and biological vision systems,” Comput. Vision Graphics Image Process. 22, 1–27 (1983). [CrossRef]
  12. D. H. Ballard, C. M. Brown, Computer Vision (Prentice-Hall, Englewood Cliffs, N.J., 1982).
  13. F. O. Huck, C. L. Fales, S. K. Park, D. J. Jobson, R. W. Samms, “Image-plane processing of visual information,” Appl. Opt. 23, 3160–3167 (1984). [CrossRef] [PubMed]
  14. D. Marr, T. Poggio, E. Hildreth, “Smallest channel in early human vision,” J. Opt. Soc. Am. 70, 868–870 (1980). [CrossRef] [PubMed]
  15. M. E. Jernigan, R. W. Wardell, “Does the eye contain optimal edge detection mechanisms?” IEEE Trans. Syst. Man Cybern. SMC-11, 441–444 (1981).
  16. P. Mertz, F. Gray, “Theory of scanning and its relation to characteristics of transmitted signal in telephotography and television,” Bell Syst. Tech. J. 13, 464–515 (July1934). [CrossRef]
  17. O. H. Schade, “Image gradation, graininess and sharpness in television and motion-picture systems,” J. Soc. Motion Pict. Telev. Eng. 56, 137–171 (1951);J. Soc. Motion Pict. Telev. Eng. 58, 181–222 (1952);J. Soc. Motion Pict. Telev. Eng. 61, 97–164 (1953);J. Soc. Motion Pict. Telev. Eng. 64, 593–617 (1955).
  18. L. G. Callahan, W. M. Brown, “One- and two-dimensional processing in line scanning systems,” Appl. Opt. 2, 401–407 (1963). [CrossRef]
  19. A. Macovski, “Spatial and temporal analysis of scanned systems,” Appl. Opt. 9, 1906–1910 (1970). [PubMed]
  20. S. J. Katzberg, F. O. Huck, S. D. Wall, “Photosensor aperture shaping to reduce aliasing in optical-mechanical line-scan imaging systems,” Appl. Opt. 12, 1054–1060 (1973). [CrossRef] [PubMed]
  21. A. H. Robinson, “Multidimensional Fourier transforms and image processing with finite scanning apertures,” Appl. Opt. 12, 2344–2352 (1973). [CrossRef] [PubMed]
  22. L. M. Biberman, ed., Perception of Displayed Information (Plenum, New York, 1973). [CrossRef]
  23. F. O. Huck, N. Halyo, S. K. Park, “Aliasing and blurring in 2-D sampled imagery,” Appl. Opt. 19, 2174–2181 (1980). [CrossRef] [PubMed]
  24. C. L. Fales, F. O. Huck, R. W. Samms, “Imaging system design for improved information capacity,” Appl. Opt. 23, 872–888 (1984). [CrossRef] [PubMed]
  25. H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  26. W. K. Pratt, Digital Image Processing (Wiley, New York, 1978).
  27. T. S. Huang, ed., Picture Processing and Digital Filtering (Springer-Verlag, Berlin, 1979). [CrossRef]
  28. A. Rosenfeld, A. C. Kak, Digital Picture Processing (Academic, New York, 1982).
  29. S. K. Park, R. A. Schowengerdt, “Image reconstruction by parametric cubic convolution,” Comput. Vision Graphics Image Process. 23, 258–272 (1983). [CrossRef]
  30. S. K. Park, R. A. Schowengerdt, “Image sampling, reconstruction, and the effect of sample-scene phasing,” Appl. Opt. 21, 3142–3151 (1982). [CrossRef] [PubMed]
  31. R. A. Schowengerdt, S. K. Park, R. Gray, “Topics in the two-dimensional sampling and reconstruction of images,” Int. J. Remote Sensing 5(2), 333–347 (1984). [CrossRef]
  32. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423;Bell Syst. Tech. J. 28, 623–656 (1948);C. E. Shannon, W. Weaver, The Mathematical Theory of Communication (U. Illinois Press, Urbana, Ill., 1964).
  33. B. R. Frieden, “Information and the restorability of images,” J. Opt. Soc. Am. 60, 575–576 (1970). [CrossRef]
  34. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Times Series (Wiley, New York, 1949).
  35. C. W. Helstrom, “Image restoration by the method of least squares,” J. Opt. Soc. Am. 57, 297–303 (1967). [CrossRef]
  36. B. R. Frieden, “How well can a lens system transmit entropy?,” J. Opt. Soc. Am. 58, 1105–1112 (1968). [CrossRef]
  37. M. Mino, Y. Okano, “Improvement in the OTF of a defocused optical system through the use of shaded apertures,” Appl. Opt. 10, 2219–2225 (1970). [CrossRef]
  38. J. E. Hall, J. D. Awtrey, “Real-time image enhancement using 3 by 3 pixel neighborhood operator functions,” Opt. Eng. 19, 421–424 (1980). [CrossRef]
  39. L. S. Davis, “Computer architectures for image processing,” IEEE Comput. Soc. Workshop Proc. CH1530-5, 249–254 (1980).
  40. W. L. Eversole, J. F. Salzman, F. V. Taylor, W. L. Harland, “Programmable image processing element,” SPIE Proc. 301, 66–77 (1981). [CrossRef]
  41. J. M. Enoch, F. L. Tobey, ed., Vertebrate Photoreceptor Optics (Springer-Verlag, Berlin, 1981). [CrossRef]
  42. H. J. Metcalf, “Stiles–Crawford apodization,” J. Opt. Soc. Am. 55, 72–74 (1965). [CrossRef]
  43. J. P. Carroll, “Apodization model of the Stiles–Crawford effect,” J. Opt. Soc. Am. 70, 1155–1156 (1980). [CrossRef] [PubMed]
  44. M. Kass, J. Hughes, “A stochastic image model for AI,” IEEE Proc. Syst. Man Cybern. Conf. X, 369–372 (1983).
  45. Y. Itakura, S. Tsutsumi, T. Takagi, “Statistical properties of the background noise for the atmospheric windows in the intermediate infrared region,” Infrared Phys. 14, 17–29 (1974). [CrossRef]
  46. Y. L. Lee, Statistical Theory of Communications (Wiley, New York, 1964).
  47. F. O. Huck, S. K. Park, “Optical-mechanical line-scan imaging process: its information capacity and efficiency,” Appl. Opt. 14, 2508–2520 (1975). [CrossRef] [PubMed]
  48. E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963).
  49. M. M. Sondhi, “Image restoration: the removal of spatially invariant degradations,” IEEE Proc. 60, 842–852 (1972). [CrossRef]
  50. H. B. Barlow, “Critical factors in the design of the eye and visual cortex,” Proc. R. Soc. London Ser. B 212, 1 (1981). [CrossRef]
  51. J. W. Modestino, R. W. Fries, “Edge detection in noisy images using recursive digital filtering,” Comput. Graphics Image Process. 6, 409–433 (1977). [CrossRef]
  52. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York; 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited