OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 2, Iss. 10 — Oct. 1, 1985
  • pp: 1667–1676

Reconstruction algorithm for incomplete projections in the framework of linear operators in normed linear spaces

P. Seitz and P. Rüegsegger  »View Author Affiliations


JOSA A, Vol. 2, Issue 10, pp. 1667-1676 (1985)
http://dx.doi.org/10.1364/JOSAA.2.001667


View Full Text Article

Enhanced HTML    Acrobat PDF (2662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the linearity of the Radon transform and the convolution-backprojection reconstruction algorithm, a new linear-vector space notation is introduced that is of general use in computed tomography (CT) Using this notation a consistency condition for the completion of incomplete projection data is described. This consistency condition leads to singular or ill-conditioned systems of linear equations for the unknown projection data. Using regularization methods, an algorithm for the consistent projection completion is presented that can exploit symmetries of the missing data region The performance of the new algorithm is documented with simulated and actualy measured CT projection data. The algorithm quantitatively improves CT reconstructions with realistic amounts of data and noise and can be used for the completion of arbitrary regions of missing projections.

© 1985 Optical Society of America

History
Original Manuscript: August 28, 1984
Manuscript Accepted: May 28, 1985
Published: October 1, 1985

Citation
P. Seitz and P. Rüegsegger, "Reconstruction algorithm for incomplete projections in the framework of linear operators in normed linear spaces," J. Opt. Soc. Am. A 2, 1667-1676 (1985)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-2-10-1667


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Oppenheim, Reconstruction tomography from incomplete projections,” in Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine, M. M. Terr-Pogossian et al., eds. (University Park, Baltimore, Md., 1977) pp. 155–165.
  2. R. M. Lewitt, R. H. T. Bates, “Image reconstruction from projections—part III—projection completion methods,” Optik 50, 189–204 (1978).
  3. A. K. Louis, “Picture reconstruction from projections in restricted range,” Math. Meth. Appl. Sci. 2, 209–220 (1980). [CrossRef]
  4. F. Natterer, “Efficient implementation of optimal algorithms in computerized tomography,” Math. Meth. Appl. Sci. 2, 545–555 (1980). [CrossRef]
  5. P. Seitz, P. Rüegsegger, “Bone densitometry in the vicinity of metallic implants,” J. Comput. Assist. Tomogr. 6 (1), 198–199 (1982). [CrossRef]
  6. M. Nassi, W. R. Brody, B. P. Medoff, A. Macovski, “Iterative reconstruction-reprojection: an algorithm for limited data cardiac-computed tomography,” IEEE Trans. Biomed. Eng. BME-29, 333–340 (1982). [CrossRef]
  7. B. P. Medoff, W. R. Brody, M. Nassi, A. Macovski, “Iterative convolution backprojection algorithms for image reconstruction from limited data,” J. Opt. Soc. Am. 73, 1493–1500 (1983). [CrossRef]
  8. M. E. DavisonThe ill-conditioned nature of the limited angle tomography problem,” SIAM J. Appl. Math. 43, 428–448 (1983). [CrossRef]
  9. A. M. Darling, T. J. Hall, M. A. Fiddy, “Stable, noniterative object reconstruction from incomplete data using a priori knowedge,” J. Opt. Soc. Am. 73, 1466–1469 (1983). [CrossRef]
  10. P. Seitz, “Computertomographische Osteodensitometrie beim metallischen Kunstgelenk,” Ph.D. dissertation (Federal Institute of Technology, Zurich, Switzerland, 1984).
  11. L. M. Chen, A. S. Ho, R. E. Burge, “Use of a priori knowledge in image restoration,” J. Opt. Soc. Am. A 1, 386–391 (1984). [CrossRef]
  12. A. K. Louis, F. Natterer, “Mathematical problems of computerized tomography,” Proc. IEEE 71, 379–389 (1983). [CrossRef]
  13. L. A. Shepp, B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974). [CrossRef]
  14. S. Helgason, “The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds,” Acta Math. 113, 153–180 (1965). [CrossRef]
  15. D. Ludwig, “The Radon transform on Euclidean spaces,” Commun. Pure Appl. Math. 19, 49–81 (1966). [CrossRef]
  16. S. Helgason, “The Radon transform,” in Progress in Mathematics, J. Coates, S. Helgason, eds. (Birkhäuser, Cambridge, Mass., 1980), Vol. 5.
  17. A. Tikhonov, V. Arsenin, Solution of Ill-Posed Problems (Wiley, New York, 1977).
  18. G. T. Herman, Image Reconstruction from Projections (Academic, New York, 1980).
  19. R. R. Bitmead, B. D. O. Anderson, “Asymptotically fast solution of Toeplitz and related systems of linear equations,” Lin. Alg. Its Appl. 34, 103–116 (1980). [CrossRef]
  20. H. Akaike, “Block Toeplitz matrix inversion,” SIAM (Soc Ind Appl. Math.) Rev. 24, 234–241, 1973. [CrossRef]
  21. T. Hinderling, P. Rüegsegger, M. Anliker, C. Dietschi, “Computed tomography from hollow projections: an application to in vivo evaluation of artificial hip joints,” J. Comput. Assist. Tomogr. 3(1) 52–57 (1979). [CrossRef] [PubMed]
  22. B. Stebler, P. Rüegsegger, “Special purpose CT-system for quantitative bone evaluation in the appendicular skeleton,” Biomed. Tech. 28, 196–205 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited