OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 2, Iss. 10 — Oct. 1, 1985
  • pp: 1687–1692

Dead-time modified photocount distributions for chaotic radiation with arbitrary coherence times

Gerard Lachs and Lin Wen-Tsung  »View Author Affiliations

JOSA A, Vol. 2, Issue 10, pp. 1687-1692 (1985)

View Full Text Article

Enhanced HTML    Acrobat PDF (732 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A computer simulation method is employed to investigate the dead-time modified photocount detection distribution where the ratio of coherence time of the incident radiation to the counting time τc/T ≦ 1. The principal result is to demonstrate that a dead-time correction formula that was derived for τc/T ≫ 1 may be modified to be applicable to arbitrary coherence times. The simulation technique was verified by comparing simulated results with known results for dead-time modified photocount distribution for radiation with τc/T ≫ 1 and for unmodified photocount distribution for radiation with τc/T ≦ 1.

© 1985 Optical Society of America

Original Manuscript: March 3, 1985
Manuscript Accepted: June 13, 1985
Published: October 1, 1985

Gerard Lachs and Lin Wen-Tsung, "Dead-time modified photocount distributions for chaotic radiation with arbitrary coherence times," J. Opt. Soc. Am. A 2, 1687-1692 (1985)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, New York, 1978). [CrossRef]
  2. D. L. Snyder, Random Point Processes (Wiley, New York, 1975).
  3. N. F. Ruggieri, D. O. Cummings, G. Lachs, “Simulation of superposed coherent and chaotic radiation of arbitrary spectral shape,” J. Appl. Phys. 43, 1118 (1972). [CrossRef]
  4. S. R. Laxpati, G. Lachs, “Closed-form solutions for the photocount statistics of superposed coherent and chaotic radiation,” J. Appl. Phys. 43, 4773 (1972). [CrossRef]
  5. R. J. Glauber, in Quantum Optics and Electronics les Houches, 1964, C. DeWitt, A. Blandin, C. Cohen-Tannoudi, eds. (Gordon and Breach, New York, 1965).
  6. J. Perina, Coherence of Light (Van Nostrand, London, 1971).
  7. F. T. Arecchi, A. Berne, A. Sona, P. Bulamacchi, “Photocount distributions and field statistics,” IEEE J. Quantum Electron. QE-2, 341 (1969).
  8. F. T. Arecchi, G. S. Radari, A. Sona, “Statistics of laser radiation at threshold,” Phys. Lett. 25, 59 (1967). [CrossRef]
  9. W. S. Archibald, J. A. Armstrong, “Laser photon counting distributions near threshold,” Phys. Rev. Lett. 16, 1169 (1966). [CrossRef]
  10. C. Freed, H. A. Haus, “Photoelectron statistics produced by a laser operating below and above the threshold of oscillation,” IEEE J. Quantum Electron. QE-2, 190 (1966). [CrossRef]
  11. R. F. Chang, V. Korenman, C. O. Alley, R. W. Detenbeck, “Corrections in light from a laser at threshold,” Phys. Rev. 178, 612 (1969). [CrossRef]
  12. B. E. A. Saleh, M. C. Teich, “Multiplied-Poisson noise in pulse, particle, and photon detection,” Proc. IEEE 70, 229 (1982). [CrossRef]
  13. D. B. Scarl, “Measurements of photon correlations of partially coherent light,” Phys. Rev. 175, 1661 (1968). [CrossRef]
  14. E. C. Jakeman, C. J. Oliver, E. R. Pike, “A measurement of optical linewidth by photon-counting statistics,” J. Phys. A 1, 406 (1968). [CrossRef]
  15. L. Mandel, “Photon correlations,” Phys. Rev. Lett. 10, 276 (1963). [CrossRef]
  16. G. Lachs, N. F. Ruggieri, “The effect of spectral shape on the probability of error in laser binary communications,” IEEE Trans. Aerosp. Electron. Syst. AES-9, 860 (1973). [CrossRef]
  17. G. Lachs, M. C. Miner, “Detection statistics for laser radar in atmospheric turbulence with fluctuating targets,” IEEE Trans. Aerosp. Electron. Syst. AES-11, 234 (1975). [CrossRef]
  18. R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976).
  19. C. W. Helstrom, J. W. S. Liu, J. P. Gordon, “Quantum mechanical communication theory,” Proc. IEEE 58, 1578 (1970). [CrossRef]
  20. L. M. Riccardi, F. Esposito, “On some distribution functions for non-linear switching elements with finite dead time,” Ky-bernetik 3, 148 (1966).
  21. J. W. Müller, “Some formulae for a dead-time-distorted Poisson process,” Nucl. Instrum. Methods 117, 401 (1974);J. W. Müller, ed., Bibliography on dead time effects. Report BIPM-81/11 (Bureau International des Poids et Measures, Sèvres, France, 1981). [CrossRef]
  22. B. I. Cantor, M. C. Teich, “Dead-time corrected photo-counting distributions for laser radiation,” J. Opt. Soc. Am. 65, 786 (1975). [CrossRef]
  23. G. Vannucci, M. C. Teich, “Effects of rate variation on the counting statistics of dead-time-modified Poisson processes,” Opt. Commun. 25, 267 (1978). [CrossRef]
  24. M. C. Teich, G. Vannucci, “Observation of dead-time-modified photocounting distributions for modulated laser radiation,” J. Opt. Soc. Am. 68, 1338, (1978). [CrossRef]
  25. G. Bedard, “Dead-time corrections to the statistical distribution of photoelectrons,” Proc. Phys. Soc. 90, 131 (1967). [CrossRef]
  26. I. DeLotto, P. F. Manfredi, P. Principi, “Counting statistics and dead-time losses part 1,” Energ. Nucl. (Milan) 11, 557 (1964).
  27. B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, New York, 1978), p. 275.
  28. G. Vannucci, M. C. Teich, “Dead-time-modified photocount mean and variance for chaotic radiation,” J. Opt. Soc. Am. 71, 164–170 (1981);S. K. Srinivasan, “Dead-time effects in photon counting statistics,” J. Phys. A 11, 2333–2340 (1978). [CrossRef]
  29. L. Mandel, E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231 (1965). [CrossRef]
  30. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66, 51 (1978). [CrossRef]
  31. A. V. Oppenheim, R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).
  32. F. F. Kuo, J. F. Keiser, System Analysis by Digital Computer (Wiley, New York, 1966), Chap. 7.
  33. W. T. Lin, “Computer simulation for the photocount statistics for chaotic radiation,” M.S. thesis (Pennsylvania State University, University Park, Pa., May1984, unpublished).
  34. G. Vannucci, M. C. Teich, “Computer simulation of superposed coherent and chaotic radiation,” Appl. Opt. 19, 548 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited