OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 2, Iss. 10 — Oct. 1, 1985
  • pp: 1705–1710

Phase integral solutions for graded-index fibers

Franz M. Wurnik  »View Author Affiliations

JOSA A, Vol. 2, Issue 10, pp. 1705-1710 (1985)

View Full Text Article

Enhanced HTML    Acrobat PDF (635 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the dispersion-optimized range of power-law refractive-index profiles in optical fibers, the phase and the eigenvalue integrals appearing in Wentzel–Kramers–Brillouin solutions are solved. These new solutions provide an explicit description of the electromagnetic-field distributions and phase constants in weakly guiding fibers with power-law refractive-index profiles in terms of usual fiber parameters.

© 1985 Optical Society of America

Original Manuscript: July 23, 1984
Manuscript Accepted: May 9, 1985
Published: October 1, 1985

Franz M. Wurnik, "Phase integral solutions for graded-index fibers," J. Opt. Soc. Am. A 2, 1705-1710 (1985)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gloge, E. A. J. Marcantilli, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973). [CrossRef]
  2. M. K. Barnoski, ed., Fundamentals of Optical Fiber Communications (Academic, New York, 1981).
  3. W. Streifer, C. N. Kurtz, “Scalar analysis of radially inhomogeneous guiding media,” J. Opt. Soc. Am. 57, 779 (1967). [CrossRef]
  4. T. Okoshi, Optical Fibers (Academic, New York, 1982).
  5. I. S. Gradstein, I. M. Ryshik, Tables of Series, Products and Integrals (Verlag Harri Deutsch, Thun, Frankfurt/Main, 1981), Vol. 1.
  6. M. Abramovitz, J. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited