OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 2, Iss. 10 — Oct. 1, 1985
  • pp: 1725–1734

Diffusion approximation for scattering in a cylinder: optics of phototropism

Alfred R. Steinhardt and Leonid Fukshansky  »View Author Affiliations

JOSA A, Vol. 2, Issue 10, pp. 1725-1734 (1985)

View Full Text Article

Enhanced HTML    Acrobat PDF (1181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A quantitative treatment of the mechanism of phototropism in plants (directed growth caused by assymetrical illumination) implies the description of light propagation in both nonscattering and intensely scattering finite cylinders. We solve this problem for cylinders illuminated unilaterally by parallel and diffuse light applying the diffusion theory. As a first step, the complicated spatial distribution of the coherent intensity as caused by the jump of the refractive index and the nonzero curvature of the cylinder has been derived by means of differential geometry. This distribution (which is also the final solution for nonscattering objects) provides the source term in the diffusion equation (for isotropic scattering) for the turbid cylinder, which is then solved using a Green function.

© 1985 Optical Society of America

Original Manuscript: August 16, 1984
Manuscript Accepted: May 22, 1985
Published: October 1, 1985

Alfred R. Steinhardt and Leonid Fukshansky, "Diffusion approximation for scattering in a cylinder: optics of phototropism," J. Opt. Soc. Am. A 2, 1725-1734 (1985)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Senger, The Blue Light Syndrome (Springer-Verlag, Berlin, 1980). [CrossRef]
  2. D. S. Dennison, “Phototropism,” in Encyclopedia of Plant Physiology, A. Pirson, M. H. Zimmermann, eds. (Springer-Verlag, Berlin, 1979), Vol. VII, pp. 506–560.
  3. F. Lenci, G. Colombetti, eds., Photoreception and Sensory Transduction in Aneural Organisms (Plenum, New York, 1980). [CrossRef]
  4. W. Shropshire, “The lens effect and phototropism of phycomyces,” J. Gen. Physiol. 45, 949–958 (1962).
  5. A. J. Jesaitis, “Linear dichroism and orientation of the phycomyces photopigment,” J. Gen. Physiol. 63, 1–21 (1974).
  6. L. Jaffe, H. Etzold, “Orientation and locus of tropic photoreceptor molecules in spores of Botrytis and Osmunda,” J. Cell Biol. 13, 13–31 (1962).
  7. K. Bergmann, P. V. Burke, E. Cerdá-Olmedo, C. N. David, M. Delbrück, K. W. Foster, E. W. Goodell, M. Heisenberg, G. Meissner, M. Zalokar, D. S. Dennison, W. Shropshire, “Phycomyces,” Bact. Rev. 33, 99–157 (1969).
  8. E. Schäfer, L. Fukshansky, W. Shropshire, “Action spectroscopy of photoreversible pigment systems,” in Encyclopedia of Plant Physiology, W. Shropshire, H. Mohr, eds. (Springer-Verlag, Berlin, 1983), Vol. 16, pp. 39–68.
  9. L. Fukshansky, “Optical properties of plants,” in Plants and the Daylight Spectrum, H. Smith, ed. (Academic, New York, 1981), p. 21.
  10. L. Fukshansky, N. Kazarinova, “Extension of the Kubelka–Munk theory of light propagation in intensity scattering materials to fluorescent media,” J. Opt. Soc. Am. 70, 1101–1011 (1980). [CrossRef]
  11. M. G. Holmes, L. Fukshansky, “Phytochrome photoequilibria in green leaves under polychromatic radiation: a theoretical approach,” Plant Cell Environ. 2, 59–65 (1979). [CrossRef]
  12. M. Seyfried, E. Schäfer, L. Fukshansky, “Biological aspects of light distribution in scattering media,” Proc. Soc. Photo-Opt. Instrum. Eng. 369, 574–580 (1983).
  13. K. M. Hartmann, “Wirkungsspektroskopie,” in Biophysik, W. Hoppe, W. Lohmann, H. Mark, H. Ziegler, eds. (Springer-Verlag, Berlin, 1982), p. 122.
  14. E. D. Lipson, D. Presti, “Light induced absorbance changes in Phycomyces photomutants,” Photochem. Photobiol. 25, 203–208 (1977). [CrossRef]
  15. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456–2462 (1983). [CrossRef] [PubMed]
  16. S. Wan, R. R. Anderson, J. A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34, 493–499 (1981). [PubMed]
  17. L. Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976). [CrossRef] [PubMed]
  18. K. G. Privoznik, K. J. Daniel, F. P. Incropera, “Absorption, extinction and phase function measurements for algal suspensions of Chlorella pyrenoidosa,” J. Quant. Spectrosc. Radiat. Transfer 20, 345–352 (1978). [CrossRef]
  19. A. L. Crosbie, R. L. Dougherty, “Two-dimensional isotropic scattering in a semi-infinite cylindrical medium,” J. Quant. Spectrosc. Radiat. Transfer 20, 155–173 (1978), and references cited therein. [CrossRef]
  20. A. L. Crosbie, R. L. Dougherty, “Two-dimensional radiative transfer in a cylindrical geometry with anisotropic scattering,” J. Quant. Spectrosc. Radiat. Transfer 25, 551–569 (1980). [CrossRef]
  21. M. Seyfried, doctoral dissertation (University of Freiburg, Freiburg, 1980) (unpublished).
  22. M. Seyfried, E. Schäfer, L. Fukshansky, “Correcting remission and transmission spectra of plant tissue measured in glass cuvettes: a technique,” Appl. Opt. 22, 492–496 (1983). [CrossRef] [PubMed]
  23. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1, Chap. 9.
  24. A. Ishimaru, Y. Kuga, R. L.-T. Cheung, K. Shimizu, “Scattering and diffusion of a beam wave in randomly distributed scatterers,” J. Opt. Soc. Am. 73, 131–136 (1983). [CrossRef]
  25. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 41.
  26. The concept of wave fronts and caustics is discussed at length in O. N. Stavroudis, The Optics of Rays, Wave Fronts and Caustics (Academic, New York, 1972);M. Kline, I. W. Kay, Electromagnetic Theory and Geometrical Optics (Interscience, New York, 1965).
  27. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 170.
  28. K. Strubecker, Differentialgeometrie I, Kurυentheorie (Gruyter, Berlin, 1964), p. 69.
  29. K. Strubecker, Differentialgeometrie I, Kurυentheorie (Gruyter, Berlin, 1964), p. 18.
  30. d/dx∫A(x)B(x)F(x,ξ)dξ=∫A(x)B(x)∂/∂xF(x,ξ)dξ+F[x,B(x)]dB(x)/dx−F[x,A(x)]dA(x)/dx.
  31. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), p. 17.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited