OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 2, Iss. 2 — Feb. 1, 1985
  • pp: 280–283

Visual responses to vorticity and the neural analysis of optic flow

D. Regan and K. I. Beverley  »View Author Affiliations


JOSA A, Vol. 2, Issue 2, pp. 280-283 (1985)
http://dx.doi.org/10.1364/JOSAA.2.000280


View Full Text Article

Enhanced HTML    Acrobat PDF (549 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

While an observer is moving forward, his retinal image of the outside world contains a flow field. This optical flow field carries information both about external objects and about where the observer is going relative to these objects. Mathematically, the flow pattern can be analyzed into elements that include the curl of local velocity (i.e., vorticity), and it has been suggested that the visual pathway might contain independent neural mechanisms sensitive to these mathematical elements [ Longuet-HigginsH. C. PrazdnyK., Proc. R. Soc. London Ser. B 208, 385– 397 ( 1980)]. To test this suggestion we compared visual responses to two circular areas of random dots, A and B. These two stimuli were identical in that all dots oscillated along a straight line in one of two possible directions. However, the relative phases of dot oscillations were different for A and B, causing A to have a rotary component of motion that B did not have. We found that rotary motion thresholds for a rotary test stimulus were more elevated after adapting to A than after adapting to B, a difference that cannot be explained in terms of visual responses to linear motion, since linear motion components were the same for A and B. This finding is consistent with the idea of a neural mechanism sensitive to the curl of velocity (i.e., vorticity). Adding this to previous evidence for a mechanism specifically sensitive to the divergence of velocity (i.e., dilatation), we suggest that one role of these postulated mechanisms might be to parallel vector calculus by analyzing each small patch of the visual flow field into neural representations of the mathematically independent quantities curl and divergence of velocity.

© 1985 Optical Society of America

History
Original Manuscript: May 4, 1983
Manuscript Accepted: October 1, 1984
Published: February 1, 1985

Citation
D. Regan and K. I. Beverley, "Visual responses to vorticity and the neural analysis of optic flow," J. Opt. Soc. Am. A 2, 280-283 (1985)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-2-2-280

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited