OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 2, Iss. 5 — May. 1, 1985
  • pp: 674–682

Computation of photoelectron counting distributions by numerical contour integration

Carl W. Helstrom  »View Author Affiliations


JOSA A, Vol. 2, Issue 5, pp. 674-682 (1985)
http://dx.doi.org/10.1364/JOSAA.2.000674


View Full Text Article

Enhanced HTML    Acrobat PDF (975 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cumulative distributions of the number of photoelectrons ejected during a fixed interval can be computed by numerical contour integration in the complex plane when the light incident upon the detector is a combination of coherent light and incoherent background light with arbitrary spectral density. The integrand involves the probability-generating function of the distribution, and a method for computing it in terms of the solution of a certain integral equation is described. The method is related to those for the estimation of a stochastic process in the presence of white noise. An approximation valid for large values of the time–bandwidth product is also described.

© 1985 Optical Society of America

History
Original Manuscript: July 23, 1984
Manuscript Accepted: January 10, 1985
Published: May 1, 1985

Citation
Carl W. Helstrom, "Computation of photoelectron counting distributions by numerical contour integration," J. Opt. Soc. Am. A 2, 674-682 (1985)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-2-5-674


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel, “Fluctuations of photon beams: the distribution of the photoelectrons,” Proc. Phys. Soc. London 74, 233–243 (1959). [CrossRef]
  2. R. J. Glauber, “Optical coherence and photon statistics,” in Quantum Optics and Electronics, C. DeWitt, A. Blandin, C. Cohen-Tannoudji, eds. (Gordon and Breach, New York, 1965), pp. 65–185; see Lecture XVII, pp. 176–185.
  3. J. Peřina, R. Horák, “On the quantum statistics of the superposition of coherent and chaotic fields,”J. Phys. A 2, 702–712 (1969). [CrossRef]
  4. S. Karp, J. R. Clark, “Photon counting: a problem in classical noise theory,”IEEE Trans. Inf. Theory IT-16, 672–680 (1970). [CrossRef]
  5. A. K. Jaiswal, C. L. Mehta, “Photon counting statistics of harmonic signal mixed with thermal light. I. Single photoelectron counting,” Phys. Rev. A 2, 168–172 (1970). [CrossRef]
  6. G. Lachs, “Approximate photocount statistics for coherent and chaotic radiation of arbitrary spectral shape,” J. Appl. Phys. 42, 602–609 (1971). [CrossRef]
  7. R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976), pp. 80–83.
  8. B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978), pp. 206–210.
  9. R. Barakat, J. Blake, “Theory of photoelectron counting statistics, an essay,” Phys. Reports 60, 225–340 (1980). [CrossRef]
  10. E. Jakeman, E. R. Pike, “Statistics of heterodyne detection of Gaussian light,”J. Phys. A 2, 115–125 (1969). [CrossRef]
  11. C. W. Helstrom, “The distribution of photoelectric counts from partially polarized Gaussian light,” Proc. Phys. Soc. London 83, 777–782 (1964). [CrossRef]
  12. P. J. Bickel, K. A. Doksum, Mathematical Statistics (Holden-Day, San Francisco, Calif., 1977), Sec. 9.6, pp. 378–389.
  13. A. J. F. Siegert, “A systematic approach to a class of problems in the theory of noise and other random phenomena. Part II, Examples,”IRE Trans. Inf. Theory IT-3, 38–44 (1957). [CrossRef]
  14. G. Bédard, “Photon counting statistics of Gaussian light,” Phys. Rev. 151, 1038–1039 (1966). [CrossRef]
  15. S. R. Laxpati, G. Lachs, “Closed-form solutions for the photocount statistics of superposed coherent and chaotic radiation,” J. Appl. Phys. 43, 4773–4776 (1972). [CrossRef]
  16. C. W. Helstrom, “Comment: Distribution of quadratic forms in normal random variables—evaluation by numerical integration,” SIAM J. Sci. Stat. Comput. 4, 353–356 (1983). [CrossRef]
  17. R. W. Hornbeck, Numerical Methods (Quantum, New York, 1975), pp. 69–71.
  18. H. A. Spang, “A review of minimization techniques for nonlinear functions,”SIAM Rev. 4, 343–365 (1962). [CrossRef]
  19. G. F. Carrier, M. Krook, C. E. Pearson, Functions of a Complex Variable (McGraw-Hill, New York, 1966), pp. 257ff.
  20. C. W. Helstrom, “Evaluating the detectability of Gaussian stochastic signals by steepest descent integration,”IEEE Trans. Aerosp. Electron. Syst. AES-19, 428–437 (1983). [CrossRef]
  21. S. O. Rice, “Efficient evaluation of integrals of analytic functions by the trapezoidal rule,” Bell Sys. Tech. J. 52, 707–722 (1973).
  22. H. E. Daniels, “Saddlepoint approximations in statistics,” Ann. Math. Statist. 25, 631–650 (1954). [CrossRef]
  23. C. W. Helstrom, “Approximate evaluation of detection probabilities in radar and optical communications,”IEEE Trans. Aerosp. Electron. Syst. AES-14, 630–640 (1978). [CrossRef]
  24. D. Slepian, T. Kadota, “Four integral equations of detection theory,” SIAM J. Appl. Math. 17, 1102–1117 (1969). [CrossRef]
  25. A. B. Baggeroer, “A state-variable approach to the solution of Fredholm integral equations,”IEEE Trans. Inf. Theory IT-15, 557–570 (1969). [CrossRef]
  26. A. B. Baggeroer, “State variable analysis procedures,” appendix in H. L. Van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1971), Vol. II, pp. 286–327.
  27. C. W. Helstrom, Statistical Theory of Signal Detection, 2nd ed. (Pergamon, London, 1968).
  28. F. Schweppe, “Evaluation of likelihood functions for Gaussian signals,”IEEE Trans. Inf. Theory IT-11, 61–70 (1965). [CrossRef]
  29. T. Kailath, B. Lévy, L. Ljung, M. Morf, “Time-invariant implementations of Gaussian signal detectors,”IEEE Trans. Inf. Theory IT-24, 469–477 (1977).
  30. R. Hestenes, E. Stiefel, “Methods of conjugate gradients for solving linear systems,”J. Res. Nat. Bur. Stand. 49, 409–436 (1952). [CrossRef]
  31. R. E. Kalman, R. S. Bucy, “New results in linear filtering and prediction theory,” Trans. ASME Ser. D 83, 95–107 (1961). [CrossRef]
  32. H. L. Van Trees, ed., Detection, Estimation, and Modulation Theory (Wiley, New York, 1971), Vol. III, App. pp. 565–604.
  33. T. Kailath, “Some new algorithms for recursive estimation in constant linear systems,”IEEE Trans. Inf. Theory IT-19, 750–760 (1973). [CrossRef]
  34. U. Grenander, H. O. Pollak, D. Slepian, “The distribution of quadratic forms in normal variates: a small sample theory with applications to spectral analysis,”J. Soc. Ind. Appl. Math. 7, 374–401 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited