OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 2, Iss. 5 — May. 1, 1985
  • pp: 693–697

Phase ambiguities and the zeros of multidimensional band-limited functions

M. S. Scivier and M. A. Fiddy  »View Author Affiliations

JOSA A, Vol. 2, Issue 5, pp. 693-697 (1985)

View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The analytic properties of multidimensional band-limited functions are described, with particular emphasis on the occurrence of zeros in the intensity distribution. It is shown that zeros at isolated points lead to ambiguities in the phase that have implications for phase retrieval, phase unwrapping, and phase-only reconstruction.

© 1985 Optical Society of America

Original Manuscript: June 25, 1984
Manuscript Accepted: December 14, 1984
Published: May 1, 1985

M. S. Scivier and M. A. Fiddy, "Phase ambiguities and the zeros of multidimensional band-limited functions," J. Opt. Soc. Am. A 2, 693-697 (1985)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Fiddy, G. Ross, M. Nieto-Vesperinas, A. M. J. Huiser, “Encoding of information in inverse optical problems,” Opt. Acta 29, 23–40 (1982). [CrossRef]
  2. A. Walther, “The question of phase retrieval in optics,” Opt. Acta 10, 41–46 (1963). [CrossRef]
  3. H. A. Ferwerda, “Fundamental aspects of the phase retrieval problem,”AIP Conf. Proc. 65, 402–411 (1981). [CrossRef]
  4. M. A. Fiddy, “The phase retrieval problem,” Proc. Soc. Photo-Opt. Instrum. Eng. 413, 176–181 (1983).
  5. P. Kiedron, “A phase retrieval technique in pupil synthesis,” in Digest of Topical Meeting on Signal Recovery (Optical Society of America, Washington, D.C., 1983), paper ThA13.
  6. A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981). [CrossRef]
  7. A. V. Oppenheim, M. H. Hayes, J. S. Lim, “Iterative procedures for signal reconstruction from Fourier transform phase,” Opt. Eng. 21, 122–127 (1982). [CrossRef]
  8. A. Levi, H. Stark, “Signal reconstruction from phase by projections onto convex sets,”J. Opt. Soc. Am. 73, 810–822 (1983). [CrossRef]
  9. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef] [PubMed]
  10. A. V. Oppenheim, R. V. Scafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), Chap. 10.
  11. A. J. Devaney, “Inverse scattering theory within the Rytov approximation,” Opt. Lett. 6, 374–376 (1981). [CrossRef] [PubMed]
  12. A. J. Devaney, “Geophysical diffraction tomography,”IEEE Trans. Geosci. Remote Sensing GE-22, 3–13 (1984). [CrossRef]
  13. R. P. Boas, Entire Functions (Academic, New York, 1954).
  14. E. C. Titchmarsh, “On the zeros of certain integral functions,” Proc. Lond. Math. Soc. Ser. A 25, 283–294 (1926). [CrossRef]
  15. A. A. G. Requicha, “The zeros of entire functions: theory and engineering applications,” Proc. IEEE 68, 308–328 (1980). [CrossRef]
  16. I. Manolitsakis, “Two-dimensional scattered fields: a description in terms of the zeros of entire functions,”J. Math. Phys. 23, 2291–2298 (1982). [CrossRef]
  17. J. C. Dainty, M. A. Fiddy, “The essential role of prior knowledge in phase retrieval,” Opt. Acta. 31, 325–330 (1984). [CrossRef]
  18. J. L. C. Sanz, T. S. Huang, “Unique reconstruction of a band-limited multidimensional signal from its phase or magnitude,”J. Opt. Soc. Am. 73, 1446–1450 (1983). [CrossRef]
  19. P. J. Napier, R. H. T. Bates, “Inferring phase information from modulus information in two-dimensional aperture synthesis,” Astron. Astrophys. Suppl. 15, 427–430 (1974).
  20. M. H. Hayes, J. H. McClellan, “Reducible polynomials in more than one dimension,” Proc. IEEE 70, 197–198 (1982). [CrossRef]
  21. M. H. Hayes, “The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform,”IEEE Trans. Acoust. Speech Signal Process. ASSP-30, 140–154 (1982). [CrossRef]
  22. V. T. Tom, T. F. Quatieri, M. H. Hayes, J. H. McClellan, “Convergence of iterative non-expansive signal reconstruction algorithms,”IEEE Trans. Acoust. Speech Signal Process. ASSP-29, 1052–1058 (1981). [CrossRef]
  23. M. A. Fiddy, B. J. Brames, J. C. Dainty, “Enforcing irreducibility for phase retrieval in two dimensions,” Opt. Lett. 8, 96–98 (1983). [CrossRef] [PubMed]
  24. A. M. J. Huiser, P. van Toorn, “Ambiguity of the phase reconstruction problem,” Opt. Lett. 5, 499–501 (1980). [CrossRef] [PubMed]
  25. E. C. Titchbmarsh, The Theory of Functions, 2nd ed. (Oxford U. Press, Oxford, 1939).
  26. N. B. Baranova, B. Ya. Zel’dovich, “Dislocations of the wavefront surface and zeros of the amplitude,” Sov. Phys. JETP 53, 925–929 (1981).
  27. N. B. Baranova, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkunov, B. Ya. Zel’dovich, “Wave-front dislocations,”J. Opt. Soc. Am. 73, 525–528 (1983). [CrossRef]
  28. J. F. Nye, M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974). [CrossRef]
  29. R. C. Gunning, H. Rossi, Analytic Functions of Several Complex Variables (Prentice-Hall, Englewood Cliffs, N.J., 1965).
  30. M. S. Scivier, T. J. Hall, M. A. Fiddy, “Phase unwrapping using the complex zeros of band-limited functions and the presence of ambiguities in two dimensions,” Opt. Acta 31, 619–623 (1984). [CrossRef]
  31. R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension,” Optik 61, 247–262 (1982).
  32. J. R. Fienup, Environmental Research Institute of Michigan, P.O. Box 8186, Ann Arbor, Michigan 48107 (personal communication).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited