OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 2, Iss. 5 — May. 1, 1985
  • pp: 731–742

Electromagnetic-field distribution in loaded unstable resonators

M. Lax, G. P. Agrawal, M. Belic, B. J. Coffey, and W. H. Louisell  »View Author Affiliations


JOSA A, Vol. 2, Issue 5, pp. 731-742 (1985)
http://dx.doi.org/10.1364/JOSAA.2.000731


View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a numerical algorithm for the evaluation of the electromagnetic-field distribution in a loaded unstable resonator. The storage requirements are minimized so that the resulting code can be used for large Fresnel numbers. Edge diffraction is accounted for by a recently developed continuous Fourier-transform algorithm. Use is made of a new gain formula that incorporates the effects of interference between the forward and backward waves. The present method yields improved accuracy over previous methods and enables one to perform calculations for systems with large Fresnel numbers on a medium-sized computer. Numerical results are presented for a loaded confocal unstable resonator to study the effect of the saturated gain on the mode profile. An important conclusion is that the saturated gain does not alter the number of peaks and their relative positions in the intensity distribution. This supports the simplified view that these features arise from edge diffraction and that the saturated gain amplifies each peak by a different amount depending on the peak intensities.

© 1985 Optical Society of America

History
Original Manuscript: May 16, 1984
Manuscript Accepted: December 20, 1984
Published: May 1, 1985

Citation
M. Lax, G. P. Agrawal, M. Belic, W. H. Louisell, and B. J. Coffey, "Electromagnetic-field distribution in loaded unstable resonators," J. Opt. Soc. Am. A 2, 731-742 (1985)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-2-5-731


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, “Unstable optical resonators,” Appl. Opt. 13, 353–367 (1974); we refer to this paper for a review and for an extensive bibliography of the work on unstable resonators before 1974. [CrossRef] [PubMed]
  2. D. B. Rensch, A. N. Chester, “Iterative diffraction calculations of transverse mode distributions in confocal unstable laser resonators,” Appl. Opt. 12, 997–1010 (1973). [CrossRef] [PubMed]
  3. T. F. Ewanizky, J. M. Craig, “Negative-branch unstable resonator Nd:YAG laser,” Appl. Opt. 15, 1465–1469 (1976). [CrossRef] [PubMed]
  4. R. Chodzko, S. B. Mason, E. F. Cross, “Annular converging wave cavity,” Appl. Opt. 15, 2137–2144 (1976). [CrossRef] [PubMed]
  5. A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, A. M. Shalagin, “Shaping of the output beam in a pulsed gas laser with an unstable resonator,” Sov. J. Quantum Electron. 7, 746–752 (1977). [CrossRef]
  6. P. B. Mumola, H. J. Robertson, G. N. Steinberg, J. L. Kreuzer, A. W. McCullough, “Unstable resonator for annular gain volume lasers,” Appl. Opt. 17, 936–943 (1978). [CrossRef] [PubMed]
  7. P. W. Milonni, A. H. Paxton, “Model for the unstable resonator carbon monoxide electric-discharge laser,” J. Appl. Phys. 42, 1012–1026 (1978). [CrossRef]
  8. R. J. Dewhurst, D. Jacoby, “A mode-locked unstable Nd:YAG laser,” Opt. Commun. 28, 107–110 (1979). [CrossRef]
  9. W. H. Steier, “Unstable Resonators,” in Laser Handbook, M. L. Stitch, ed. (North-Holland, Amsterdam, 1979), Vol 3, pp. 3–39.
  10. P. Horwitz, “Asymptotic theory of unstable resonator modes,”J. Opt. Soc. Am. 63, 1528–1543 (1973). [CrossRef]
  11. R. R. Butts, P. V. Avizonis, “Asymptotic analysis of unstable laser resonators with circular mirrors,”J. Opt. Soc. Am. 68, 1072–1078 (1978). [CrossRef]
  12. L. W. Chen, L. B. Felson, “Coupled-mode-theory of unstable resonators,” IEEE J. Quantum Electron. QE-9, 1102–1113 (1973). [CrossRef]
  13. I. M. Bel’dyugin, E. M. Zemskov, A. Kh. Mamyan, V. N. Seminogov, “Theory of open resonators with cylindrical mirrors,” Sov. J. Quantum Electron. 4, 484–490 (1974).
  14. A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Converging beams in unstable telescopic resonators,” Sov. J. Quantum Electron. 4, 761–766 (1974). [CrossRef]
  15. C. Santana, L. B. Felson, “Unstable open resonators: two-dimensional and three-dimensional losses by a waveguide analysis,” Appl. Opt. 15, 1470–1478 (1976). [CrossRef] [PubMed]
  16. S. H. Cho, S. Y. Shin, L. B. Felson, “Ray-optical analysis of cylindrical unstable resonators,”J. Opt. Soc. Am. 69, 563–574 (1979). [CrossRef]
  17. S. H. Cho, L. B. Felson, “Ray-optical analysis of unstable resonators with spherical mirrors,”J. Opt. Soc. Am. 69, 1377–1384 (1979). [CrossRef]
  18. A. E. Siegman, E. A. Sziklas, “Mode calculation in unstable resonators with flowing saturable gain. I: Hermite–Gaussian expansion,” Appl. Opt. 13, 2775–2792 (1974). [CrossRef] [PubMed]
  19. E. A. Sziklas, A. E. Siegman, “Mode calculation in unstable resonators with flowing saturable gain. II: Fast Fourier transform method,” Appl. Opt. 14, 1874–1889 (1975). [CrossRef] [PubMed]
  20. Yu. A. Anan’ev, L. V. Koval’chuk, V. P. Trusov, V. E. Sherstobitov, “Method for calculating the efficiency of lasers with unstable resonators,” Sov. J. Quantum Electron. 4, 659–664 (1974). [CrossRef]
  21. Yu. N. Karamzin, Yu. B. Konev, “Numerical investigation of the operation of unstable telescopic resonators allowing for diffraction and saturation in the active medium,” Sov. J. Quantum Electron. 5, 144–148 (1975). [CrossRef]
  22. V. S. Rogov, M. M. Rikenglaz, “Numerical investigation of the influence of optical inhomogeneities of the active medium on the operation of an unstable telescopic resonator,” Sov. J. Quantum Electron. 7, 18–21 (1977). [CrossRef]
  23. C. Santana, L. B. Felson, “Effects of medium and gain inhomogeneities in unstable optical resonators,” Appl. Opt. 16, 1058–1066 (1977). [PubMed]
  24. G. T. Moore, R. J. McCarthy, “Theory of modes in a loaded strip confocal unstable resonator,”J. Opt. Soc. Am. 67, 228–241 (1977). [CrossRef]
  25. W. H. Louisell, M. Lax, G. P. Agrawal, H. W. Gatzke, “Simultaneous forward and backward integration for standing waves in a resonator,” Appl. Opt. 18, 2730–2731 (1979). [CrossRef] [PubMed]
  26. M. Lax, G. P. Agrawal, W. H. Louisell, “Continuous Fourier-transform spline solution of unstable resonator field distribution,” Opt. Lett. 9, 303–305 (1979). [CrossRef]
  27. G. P. Agrawal, M. Lax, “Effects of interference on gain saturation in laser resonators,”J. Opt. Soc. Am. 69, 1717–1719 (1979). [CrossRef]
  28. M. J. Smith, “Mode properties of strip confocal unstable resonators with saturable gain,” Appl. Opt. 20, 1611–1620 (1981). [CrossRef] [PubMed]
  29. K. E. Oughstun, “Intracavity adaptive optic compensation of phase aberrations. I: Analysis,”J. Opt. Soc. Am. 71, 862–872 (1981); Part II, J. Opt. Soc. Am. 71, 1180–1192 (1981). [CrossRef]
  30. W. P. Latham, M. E. Smithers, “Diffractive effect of a scraper in an unstable resonator,”J. Opt. Soc. Am. 72, 1321–1327 (1982). [CrossRef]
  31. K. E. Oughstun, “Intracavity adaptive optic compensation of phase aberrations. III: Passive and active cavity study for a large Neqresonator,”J. Opt. Soc. Am. 73, 282–302 (1983). [CrossRef]
  32. M. E. Smithers, T. R. Ferguson, “Unstable optical resonators with linear magnification,” Appl. Opt. 23, 3718–3724 (1984). [CrossRef] [PubMed]
  33. P. W. Milonni, “Criteria for the thin-sheet gain approximation,” Appl. Opt. 16, 2794–2795 (1977). [CrossRef] [PubMed]
  34. M. Lax, G. P. Agrawal, “Evaluation of Fourier integrals using B-splines,” Math. Comput. 39, 535–548 (1982).
  35. B. Coffey, M. Lax, “Two efficient continuous Fourier transform algorithms for unstable resonator simulation,” Appl. Opt. (to be published).
  36. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), Chap. 8.
  37. M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  38. D. O. Riska, S. Stenholm, “The influence of the mode structure on the quantum theory of the laser,” Phys. Lett. 30A, 16–17 (1969).
  39. H. J. Carmichael, “The mean-field approximation and validity of a truncated Bloch hierarchy in an absorptive bistability,” Opt. Acta 27, 147–158 (1980). [CrossRef]
  40. G. P. Agrawal, H. J. Carmichael, “Inhomogeneous broadening and the mean-field approximation for optical bistability in a Fabry–Perot,” Opt. Acta 27, 651–660 (1980). [CrossRef]
  41. H. J. Carmichael, J. A. Hermann, “Analytic description of optical bistability including spatial effects,”Z. Phys. B 38, 365–380 (1980). [CrossRef]
  42. G. P. Agrawal, M. Lax, “Analytic evaluation of interference effects on laser output in a Fabry–Perot resonator,”J. Opt. Soc. Am. 71, 515–519 (1981). [CrossRef]
  43. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976), App. A. [CrossRef]
  44. M. Lax, J. H. Batteh, G. P. Agrawal, “Channeling of intense electromagnetic beams,” J. Appl. Phys. 52, 109–125 (1981). [CrossRef]
  45. J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965). [CrossRef]
  46. L. R. Rabiner, C. M. Radar, eds., Digital Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1972).
  47. M. J. Marsden, G. D. Taylor, “Numerical evaluation of Fourier integrals,” in Numerische Methoden der Approximations Theorie (Birkhauser, Basel, 1972), Band 16, pp. 61–76.
  48. B. Einarsson, “Numerical calculation of Fourier integrals with cubic splines,” Nord. Tidsskr. Informationsbehand. 8, 279–286 (1968).
  49. B. K. Swartz, R. S. Varga, “Error bounds for spline and L-spline interpolations,”J. Approx. Theory 6, 6–49 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited