OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 1–10

Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs

Salvador Bará and Rafael Navarro  »View Author Affiliations


JOSA A, Vol. 20, Issue 1, pp. 1-10 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000001


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical quality of the human eye varies across the visual field. Hence an exact compensation of the eye aberration for a given field point can give rise to a less-than-optimum compensation in neighboring field regions. We have studied some aspects of this problem and present here an approach to design wide-field (<10°) optically thin correcting elements, e.g., phase plates, deformable mirrors, and liquid-crystal displays. Their expected performance is assessed using actual eye aberration data. Particular attention is given to the design of elements providing a minimum averaged rms residual aberration and those providing a nearly uniform rms residual aberration across a given field.

© 2003 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(220.1000) Optical design and fabrication : Aberration compensation
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

History
Original Manuscript: April 7, 2002
Revised Manuscript: July 25, 2002
Manuscript Accepted: August 13, 2002
Published: January 1, 2003

Citation
Salvador Bará and Rafael Navarro, "Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs," J. Opt. Soc. Am. A 20, 1-10 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-1-1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, New York, 1962).
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1987), Chap. 5, pp. 203–207.
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1987), pp. 464–468, 767–772.
  4. J. Y. Wang, D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510–1518 (1980). [CrossRef] [PubMed]
  5. D. Malacara, S. L. DeVore, “Interferogram evaluation and wavefront fitting,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1992), Chap. 13, pp. 455–499.
  6. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce members, “Standards for Reporting the Optical Aberrations of Eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.
  7. H. C. Howland, B. Howland, “A subjective method for the measurement of the monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977). [CrossRef] [PubMed]
  8. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  9. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  10. P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  11. R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999). [CrossRef]
  12. E. Moreno-Barriuso, R. Navarro, “Laser ray-tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000). [CrossRef]
  13. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001). [CrossRef]
  14. R. H. Webb, C. M. Penney, K. P. Thompson, “Measurement of ocular wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992). [CrossRef] [PubMed]
  15. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998). [CrossRef]
  16. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  17. L. Zhu, P. Sun, D. W. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999). [CrossRef]
  18. E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001). [CrossRef]
  19. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997). [CrossRef] [PubMed]
  20. F. Vargas-Martin, P. M. Prieto, P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998). [CrossRef]
  21. R. Navarro, E. Moreno-Barriuso, S. Bará, T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000). [CrossRef]
  22. S. A. Burns, S. Marcos, A. E. Elsner, S. Bará, “Contrast improvement for confocal retinal imaging using phase correcting plates,” Opt. Lett. 27, 400–402 (2002). [CrossRef]
  23. R. Navarro, E. Moreno, C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15, 2522–2529 (1998). [CrossRef]
  24. L. Zhu, D. W. Bartsch, W. R. Freeman, P. Sun, Y. Fainman, “Modeling human eye aberrations and their compensation for high-resolution retinal imaging,” Optom. Vision Sci. 75, 827–839 (1998). [CrossRef]
  25. G. Smith, D. A. Atchinson, C. Avudainayagam, K. Avudainayagam, “Designing lenses to correct peripheral refractive errors of the eye,” J. Opt. Soc. Am. A 19, 10–18 (2002). [CrossRef]
  26. A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of high-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 620–628 (2002). [CrossRef]
  27. G. Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002). [CrossRef]
  28. S. Bará, T. Mancebo, E. Moreno-Barriuso, “Positioning tolerances for phase plates compensating aberrations of the human eye,” Appl. Opt. 39, 3413–3420 (2000). [CrossRef]
  29. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  30. J. Herrmann, “Least-squares wave front errors of minimum norm,” J. Opt. Soc. Am. 70, 28–35 (1977). [CrossRef]
  31. B. P. Medoff, “Image reconstruction from limited data: theory and applications in computerized tomography,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, New York, 1987), Chap. 9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited