OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 147–150

Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals

Alejandro Martínez, Andrés García, Pablo Sanchis, and Javier Martí  »View Author Affiliations


JOSA A, Vol. 20, Issue 1, pp. 147-150 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000147


View Full Text Article

Acrobat PDF (174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model of the group velocity, dispersion parameter, and dispersion slope of coupled-cavity waveguides in photonic crystals is reported. Results arising from closed-form expressions show a good agreement with simulation results obtained by employing a plane-wave expansion method. Coupled-cavity waveguides present interesting dispersion properties that may be employed in applications such as optical signal processing, dispersion compensation, and optical delay lines.

© 2003 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(260.2030) Physical optics : Dispersion

Citation
Alejandro Martínez, Andrés García, Pablo Sanchis, and Javier Martí, "Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals," J. Opt. Soc. Am. A 20, 147-150 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-1-147


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, New Brunswick, N.J., 1995).
  4. T. F. Krauss, R. M. de la Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
  5. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
  6. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127–12133 (1998).
  7. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, Pa., 1976).
  8. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
  9. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, and U. Oesterle, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett. 26, 1019–1021 (2001).
  10. V. Yannopapas, A. Modinos, and N. Stefanou, “Waveguides of defect chains in photonic crystals,” Phys. Rev. B 65, 23501–1–235201–6 (2002).
  11. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express. 8, 173–190 (2001); http://www.opticsexpress.org.
  12. A. Taflove, Computational Electrodynamics (Artech House, Boston, Mass., 1995).
  13. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
  14. V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. de la Rue, “Heavy photon dispersion in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited