OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 85–91

Novel electromagnetic approach to photonic crystals with use of the C method

Tuomas Vallius and Markku Kuittinen  »View Author Affiliations


JOSA A, Vol. 20, Issue 1, pp. 85-91 (2003)
http://dx.doi.org/10.1364/JOSAA.20.000085


View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new method allowing rigorous electromagnetic analysis of scattering through photonic crystals comprising polygonal or round rods. For this purpose, we reformulate the C method with adaptive spatial resolution by utilizing the hybrid-spectrum connection method, permitting the use of nonidentical trapezoidal profiles. Considering polygonal rods as gratings consisting of different piecewise-differentiable surfaces, we are able to analyze the reflection and the transmittance of crystals by means of the C method. To enhance computational efficiency, we apply the recursive S-matrix approach with Redheffer’s star product to solve the transfer matrix for structures of numerous successive layers of rods.

© 2003 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.2770) Diffraction and gratings : Gratings
(250.5300) Optoelectronics : Photonic integrated circuits
(260.2110) Physical optics : Electromagnetic optics
(290.0290) Scattering : Scattering

History
Original Manuscript: March 26, 2002
Revised Manuscript: June 28, 2002
Manuscript Accepted: July 16, 2002
Published: January 1, 2003

Citation
Tuomas Vallius and Markku Kuittinen, "Novel electromagnetic approach to photonic crystals with use of the C method," J. Opt. Soc. Am. A 20, 85-91 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-1-85


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, D. F. Sievenpiper, “Knitting a finer net for photons,” Nature (London) 383, 665–666 (1996). [CrossRef]
  3. T. H. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelength,” Nature (London) 383, 699–702 (1996). [CrossRef]
  4. D. Nyyssonen, C. P. Kirk, “Optical microscope imaging of lines patterned in thick layers with variable edge geometry,” J. Opt. Soc. Am. A 5, 1270–1280 (1988). [CrossRef]
  5. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
  6. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  7. J. Turunen, “Diffraction theory of microrelief gratings,” Chap. 2 in Micro-Optics: Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997).
  8. J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982). [CrossRef]
  9. L. Li, J. Chandezon, “Improvement of the coordinate transformation method for surface-relief gratings with sharp edges,” J. Opt. Soc. Am. A 13, 2247–2255 (1996). [CrossRef]
  10. G. Granet, J. Chandezon, J. P. Plumey, K. Raniriharinosy, “Reformulation of the coordinate transformation method through the concept of adaptive spatial resolution: application to trapezoidal gratings,” J. Opt. Soc. Am. A 18, 2102–2108 (2001). [CrossRef]
  11. G. Granet, J.-P. Plumey, J. Chandezon, “Scattering by a periodically corrugated dielectric layer with non-identical faces,” Pure Appl. Opt. 4, 1–5 (1995). [CrossRef]
  12. T. W. Preist, N. P. K. Cotter, J. R. Samples, “Periodic multilayer gratings of arbitrary shape,” J. Opt. Soc. Am. A 12, 1740–1748 (1995). [CrossRef]
  13. L. Li, G. Granet, J. P. Plumey, J. Chandezon, “Some topics in extending the C method to multilayer gratings of different profiles,” Pure Appl. Opt. 5, 141–156 (1996). [CrossRef]
  14. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68, 1206–1210 (1978). [CrossRef]
  15. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  16. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  17. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
  18. E. Popov, L. Mashev, “Convergence of Rayleigh–Fourier method and rigorous differential method for relief diffraction gratings,” Opt. Acta 33, 593–605 (1986). [CrossRef]
  19. R. Redheffer, “Difference equations and functional equations in transmission-line theory,” Chap. 12 in Modern Mathematics for the Engineer, E. F. Beckenbach, ed. (McGraw-Hill, New York, 1961).
  20. B. Datta, A. N. Singh, History of Hindu Mathematics, 2nd ed. (Asia Publishing House, Bombay, India, 1962), pp. 75–77.
  21. P. Lalanne, E. Silberstein, “Fourier-modal method applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]
  22. L. Li, J. Chandezon, G. Granet, J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999). [CrossRef]
  23. T. Vallius, “Comparing the Fourier modal method FMM with the C method: analysis of conducting multilevel gratings in TM polarization,” J. Opt. Soc. Am. A 19, 1555–1562 (2002). [CrossRef]
  24. J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001). [CrossRef]
  25. L. C. Botten, N. A. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method,” J. Opt. Soc. Am. A 17, 2165–2176 (2000). [CrossRef]
  26. L. C. Botten, N. A. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part II. Properties and implementation,” J. Opt. Soc. Am. A 17, 2177–2190 (2000). [CrossRef]
  27. E. Popov, B. Bozhkov, “Differential method applied for photonic crystals,” Appl. Opt. 39, 4926–4932 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited