OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 99–105

Light transport in chiral and magnetochiral random media

Felipe A. Pinheiro and Bart A. van Tiggelen  »View Author Affiliations

JOSA A, Vol. 20, Issue 1, pp. 99-105 (2003)

View Full Text Article

Acrobat PDF (168 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a microscopic approach to study electromagnetic wave propagation in media with broken mirror symmetry. We introduce and calculate the transport mean free path lC* associated with the residual polarization of diffuse light in chiral systems. In chiral media subject to an external magnetic field B, all symmetry requirements exist to create a macroscopic “super” light current in the direction of B that persists even in the absence of a spatial photon density gradient. However, we show that such a current is identically zero in our model. We finally show the existence of a linear magnetotransmission in magnetochiral media.

© 2003 Optical Society of America

OCIS Codes
(290.4210) Scattering : Multiple scattering
(350.5500) Other areas of optics : Propagation

Felipe A. Pinheiro and Bart A. van Tiggelen, "Light transport in chiral and magnetochiral random media," J. Opt. Soc. Am. A 20, 99-105 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. A. van Tiggelen, “Transverse diffusion of light in Faraday-active media,” Phys. Rev. Lett. 75, 422–424 (1995).
  2. G. L. J. A. Rikken and B. A. van Tiggelen, “Observation of magnetically induced transverse diffusion of light,” Nature (London) 381, 54–55 (1996).
  3. M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, “Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid,” Opt. Commun. 132, 410–416 (1996).
  4. B. P. Ablitt, K. I. Hopcraft, K. D. Turpin, P. C. Y. Chang, J. G. Walker, and E. Jakeman, “Imaging and multiple scattering through media containing optically active particles,” Waves Random Media 9, 561–572 (1999).
  5. M. P. Groenewege, “A theory of magneto-optical rotation in diamagnetic molecules of low symmetry,” Mol. Phys. 5, 541–563 (1962).
  6. D. L. Portigal and E. Burstein, “Magneto-spatial dispersion effects on propagation of electromagnetic radiation in crystals,” J. Phys. Chem. Solids 32, 603 (1971).
  7. N. B. Baranova, Yu. V. Bogdanov, and B. Ya. Zeldovich, “Electrical analog of the Faraday effect and other new optical effects in liquids,” Opt. Commun. 22, 243 (1977).
  8. N. B. Baranova and B. Ya. Zeldovich, “Theory of a new linear magnetorefractive effect in liquids,” Mol. Phys. 38, 1085–1098 (1979).
  9. G. Wagnière and A. Meier, “The influence of a static magnetic field on the absorption coefficient of a chiral molecule,” Chem. Phys. Lett. 93, 78–81 (1982).
  10. G. Wagnière, “Magnetochiral dichroism in emission. Photoselection and the polarization of transition,” Chem. Phys. Lett. 110, 546–551 (1984).
  11. L. D. Barron and J. Vrbancich, “Magneto-chiral birefringence and dichroism,” Mol. Phys. 51, 715–730 (1984).
  12. G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature (London) 390, 493–494 (1997).
  13. P. Kleindienst and G. H. Wagnière, “Interferometric detection of magnetochiral birefringence,” Chem. Phys. Lett. 288, 89–97 (1998).
  14. M. Vallet, R. Ghosh, A. Le Floch, T. Ruchon, F. Bretenaker, and J.-Y. Thépot, “Observation of magnetochiral birefringence,” Phys. Rev. Lett. 87, 183003 (2001).
  15. F. A. Pinheiro and B. A. van Tiggelen, “Magnetochiral scattering of light: optical manifestation of chirality,” Phys. Rev. E 66, 016607 (2002).
  16. POAN (Propagation des Ondes en Milieux Aleatóires et/ou Non-Linéaires) Research Group, ed., New Aspects of Electromagnetic and Acoustic Wave Diffusion (Springer-Verlag, Heidelberg, 1998).
  17. Yu. N. Barabanenkov and V. D. Ozrin, “Asymptotic solution of the Bethe–Salpeter equation and the Green–Kubo formula for the diffusion constant for wave propagation in random media,” Phys. Lett. A 154, 38–42 (1991).
  18. Yu. N. Barabanenkov and V. D. Ozrin, “Diffusion asymptotics of the Bethe–Salpeter equation for electromagnetic waves in discrete random media,” Phys. Lett. A 206, 116–122 (1995).
  19. F. C. MacKintosh and S. John, “Coherent backscattering of light in the presence of time-reversal-noninvariant and parity-nonconserving media,” Phys. Rev. B 37, 1884–1897 (1988).
  20. B. A. van Tiggelen, R. Maynard, and Th. M. Nieuwenhuizen, “Theory for multiple light scattering from Rayleigh scatterers in magnetic fields,” Phys. Rev. E 53, 2881–2908 (1996).
  21. H. Stark and T. C. Lubensky, “Multiple light scattering in nematic liquid crystals,” Phys. Rev. Lett. 77, 2229–2232 (1996).
  22. A. B. Harris, R. D. Kamien, and T. C. Lubensky, “Microscopic origin of cholesteric pitch,” Phys. Rev. Lett. 78, 1476–1479 (1997).
  23. A. B. Harris, R. D. Kamien, and T. C. Lubensky, “Molecular chirality and chiral parameters,” Rev. Mod. Phys. 71, 1745–1757 (1999).
  24. M. S. Spector, S. K. Prasad, B. T. Weslowski, R. D. Kamien, J. V. Selinger, B. R. Ratna, and R. Shashidhar, “Chiral twisting of a smectic-A liquid crystal,” Phys. Rev. E 61, 3977–3983 (2000).
  25. P. Sheng, Wave Scattering, Localization and Mesoscopic Phenomena (Academic, San Diego, Calif., 1995).
  26. G. D. Mahan, Many-Particle Physics (Plenum, New York, 1981).
  27. D. Lacoste, B. A. van Tiggelen, G. L. J. A. Rikken, and A. Sparenberg, “Optics of a Faraday-active Mie sphere,” J. Opt. Soc. Am. A 15, 1636–1642 (1998).
  28. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, San Diego, Calif., 1978), Vol. 1.
  29. A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
  30. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski, Electro-dynamics of Continuous Media (Pergamon, Oxford, UK, 1984), Sect. 103, Eq. 103.15.
  31. M. Rusek, A. Orlowski, and J. Mostowski, “Localization of light in three-dimensional random dielectric media,” Phys. Rev. E 53, 4122–4130 (1996).
  32. For “point” scatterers with Verdet constant V and line width Γ, μ=1 2 Vc0 /Γ. For two-level atoms with Zeeman splitting ħZB in a magnetic field B, μ=Z/Γ. See, for instance, G. Labeyrie, C. Miniatura, and R. Kaiser, “Large Faraday rotation of resonant light in a cold atomic cloud,” Phys. Rev. A 64, 033402 (2001).
  33. A. Sparenberg, G. L. J. A. Rikken, and B. A. van Tiggelen, “Observation of photonic magnetoresistance,” Phys. Rev. Lett. 79, 757–759 (1997).
  34. D. Lacoste and B. A. van Tiggelen, “Transport mean free path for magneto-transverse light diffusion,” Europhys. Lett. 45, 721–725 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited