OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 20, Iss. 10 — Oct. 1, 2003
  • pp: 1867–1874

Inverse scattering for a three-dimensional object in the time domain

Takashi Takenaka, Hui Zhou, and Toshiyuki Tanaka  »View Author Affiliations


JOSA A, Vol. 20, Issue 10, pp. 1867-1874 (2003)
http://dx.doi.org/10.1364/JOSAA.20.001867


View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An iterative inverse-scattering approach to reconstruction of electrical parameter distributions of a three-dimensional object by using time-domain field data is presented. The approach is the extension of the forward–backward time-stepping algorithm previously proposed for a two-dimensional object. Numerical examples of simulation data are given to assess the effectiveness of the proposed approach.

© 2003 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems

History
Original Manuscript: April 11, 2003
Manuscript Accepted: May 28, 2003
Published: October 1, 2003

Citation
Takashi Takenaka, Hui Zhou, and Toshiyuki Tanaka, "Inverse scattering for a three-dimensional object in the time domain," J. Opt. Soc. Am. A 20, 1867-1874 (2003)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-10-1867


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Iwata, R. Nagata, “Calculation of refractive index distribution from interferograms using the Born and Rytov’s approximations,” Jpn. J. Appl. Phys. 14, 1921–1927 (1975). [CrossRef]
  2. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336–350 (1982). [PubMed]
  3. W. C. Chew, Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Trans. Med. Imaging 9, 218–225 (1990). [CrossRef] [PubMed]
  4. S. Caorsi, G. L. Gragnami, M. Pastorino, “Reconstruction of dielectric permittivity distributions in 2-D inhomogeneous biological bodies by a multiview microwave numerical method,” IEEE Trans. Med. Imaging 12, 232–239 (1993). [CrossRef]
  5. G. P. Otto, W. C. Chew, “Microwave inverse scattering—local shape function imaging for improved resolution of strong scatterers,” IEEE Trans. Microwave Theory Tech. 42, 137–141 (1994). [CrossRef]
  6. H. Harada, D. J. N. Wall, T. Takenaka, M. Tanaka, “Conjugate gradient method applied to inverse scattering problem,” IEEE Trans. Antennas Propag. 43, 784–792 (1995). [CrossRef]
  7. C. S. Park, S. K. Park, J. W. Ra, “Moment method and iterative reconstruction of two-dimensional complex permittivity by using effective modes with multipole sources in the presence of noise,” Radio Sci. 31, 1877–1886 (1996). [CrossRef]
  8. A. Franchois, C. Pichot, “Microwave imaging—complex permittivity reconstruction with a Levenberg–Marquardt method,” IEEE Trans. Antennas Propag. 45, 203–214 (1997). [CrossRef]
  9. T. Isernia, V. Pascazio, R. Pierri, “A nonlinear estimation method in tomographic imaging,” IEEE Trans. Geosci. Remote Sens. 35, 910–923 (1997). [CrossRef]
  10. P. M. van den Berg, R. E. Kleinman, “A contrast source inversion method,” Inverse Probl. 13, 1607–1620 (1997). [CrossRef]
  11. O. M. Bucci, L. Crocco, T. Isernia, V. Pascazio, “Inverse scattering problems with multifrequency data: reconstruction capabilities and solution strategies,” IEEE Trans. Geosci. Remote Sens. 38, 1749–1756 (2000). [CrossRef]
  12. S. Y. Yang, H. K. Choi, J. W. Ra, “Reconstruction of a large and high-contrast penetrable object by using the genetic and Levenberg–Marquardt algorithm,” Microwave Opt. Technol. Lett. 16, 17–21 (1997). [CrossRef]
  13. M. Pastorino, A. Massa, S. Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Trans. Instrum. Meas. 49, 573–578 (2000). [CrossRef]
  14. T. Isernia, V. Pascazio, R. Pierri, “On the local minima in a tomographic imaging technique,” IEEE Trans. Geosci. Remote Sens. 39, 1596–1607 (2001). [CrossRef]
  15. S. Caorsi, M. Donelli, D. Franceschini, A. Massa, “An iterative multiresolution approach for microwave imaging applications,” Microwave Opt. Technol. Lett. 32, 352–356 (2002). [CrossRef]
  16. M. Moghaddam, W. C. Chew, “Study of some practical issues in inversion with the Born iterative method using time-domain data,” IEEE Trans. Antennas Propag. 41, 177–184 (1993). [CrossRef]
  17. W. H. Weedon, W. C. Chew, “Time-domain inverse scattering using the local shape function (LSF) method,” Inverse Probl. 9, 551–564 (1993). [CrossRef]
  18. S. He, P. Fuks, G. W. Larson, “Optimization approach to time-domain electromagnetic inverse problem for a stratified dispersive and dissipative slab,” IEEE Trans. Antennas Propag. 44, 1277–1282 (1996). [CrossRef]
  19. W. H. Yu, R. Mittra, “A nonlinear optimization technique for reconstructing dielectric scatterers with possible high contrasts,” Microwave Opt. Technol. Lett. 14, 268–271 (1997). [CrossRef]
  20. T. Takenaka, H. Jia, T. Tanaka, “Microwave imaging of electrical property distributions by a forward–backward time-stepping method,” J. Electromagn. Waves Appl. 14, 1609–1626 (2000). [CrossRef]
  21. M. Gustafsson, S. He, “An optimization approach to two-dimensional time domain electromagnetic inverse problems,” Radio Sci. 35, 525–536 (2000). [CrossRef]
  22. N. Joachimowicz, C. Pichot, J. Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Trans. Antennas Propag. 39, 1742–1752 (1991). [CrossRef]
  23. S. Caorsi, G. L. Gragnani, M. Pastorino, “Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects,” IEEE Trans. Antennas Propag. 42, 581–589 (1994). [CrossRef]
  24. J.-H. Lin, W. C. Chew, “Solution of the three-dimensional electromagnetic inverse problem by the local shape function and the conjugate gradient fast Fourier transform methods,” J. Opt. Soc. Am. A 14, 3037–3045 (1997). [CrossRef]
  25. S. Y. Semenov, R. H. Svenson, A. E. Bulyshev, A. E. Souvorov, A. G. Nazarov, Y. E. Sizov, A. V. Pavlovsky, V. Y. Borisov, B. A. Voinov, G. I. Simonova, A. N. Starostin, V. G. Posukh, G. P. Tatsis, V. Y. Baranov, “Three-dimensional microwave tomography: experimental prototype of the system and vector Born reconstruction method,” IEEE Trans. Biomed. Eng. 46, 937–946 (1999). [CrossRef] [PubMed]
  26. A. Abubakar, P. M. van den Berg, B. Kooij, “A conjugate gradient contrast source technique for 3D profile inversion,” IEICE Trans. Electron. E83-C, 1864–1874 (2000).
  27. H. Harada, M. Tanaka, T. Takenaka, “Image reconstruction of a three-dimensional dielectric object using a gradient-based optimization,” Microwave Opt. Technol. Lett. 29, 332–336 (2001). [CrossRef]
  28. V. Hutson, J. S. Pym, Applications of Functional Analysis and Operator Theory (Academic, New York, 1980).
  29. T. Tanaka, N. Kuroki, T. Takenaka, “Filtered forward–backward time-stepping method applied to reconstruction of dielectric cylinders,” J. Electromagn. Waves Appl. 17, 253–270 (2003). [CrossRef]
  30. T. Takenaka, H. Jia, T. Tanaka, “Microwave imaging of an anisotropic cylindrical object by a forward–backward time-stepping method,” IEICE Trans. Electron. E84-C, 1910–1916 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited